Nuprl Lemma : integer-part_wf
∀q:ℚ. (integer-part(q) ∈ ℤ)
Proof
Definitions occuring in Statement : 
integer-part: integer-part(q), 
rationals: ℚ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
integer-part: integer-part(q), 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
pi1: fst(t), 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
top: Top
Lemmas referenced : 
set_wf, 
equal_wf, 
qadd_wf, 
int-subtype-rationals, 
pi1_wf_top, 
subtype_rel_product, 
rationals_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
because_Cache, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
lambdaEquality, 
productEquality, 
productElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
intEquality, 
setElimination, 
rename, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}q:\mBbbQ{}.  (integer-part(q)  \mmember{}  \mBbbZ{})
Date html generated:
2018_05_22-AM-00_30_42
Last ObjectModification:
2017_07_26-PM-06_58_33
Theory : rationals
Home
Index