Step
*
2
2
of Lemma
member-rat-complex-boundary-n
1. n : ℕ
2. k : ℕ
3. K : ℚCube(k) List
4. [%1] : no_repeats(ℚCube(k);K) ∧ (∀c,d∈K. Compatible(c;d)) ∧ (∀c∈K.dim(c) = n ∈ ℤ)
5. f : ℚCube(k)
6. face-complex(k;K) ∈ ℚCube(k) List
7. dim(f) = (n - 1) ∈ ℤ
8. u : ℚCube(k)
9. v : ℚCube(k) List
10. filter(λc.is-rat-cube-face(k;f;c);K) = [u / v] ∈ (ℚCube(k) List)
⊢ (↑isOdd(||v|| + 1))
⇒ (∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ)))
BY
{ ((D 0 THENA Auto)
THEN Thin (-1)
THEN (Assert (u ∈ filter(λc.is-rat-cube-face(k;f;c);K)) BY
(RWO "-1" 0 THEN Auto))
THEN (RWO "member_filter" (-1) THENA Auto)
THEN Reduce -1
THEN D -1) }
1
1. n : ℕ
2. k : ℕ
3. K : ℚCube(k) List
4. [%1] : no_repeats(ℚCube(k);K) ∧ (∀c,d∈K. Compatible(c;d)) ∧ (∀c∈K.dim(c) = n ∈ ℤ)
5. f : ℚCube(k)
6. face-complex(k;K) ∈ ℚCube(k) List
7. dim(f) = (n - 1) ∈ ℤ
8. u : ℚCube(k)
9. v : ℚCube(k) List
10. filter(λc.is-rat-cube-face(k;f;c);K) = [u / v] ∈ (ℚCube(k) List)
11. (u ∈ K)
12. ↑is-rat-cube-face(k;f;u)
⊢ ∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ))
Latex:
Latex:
1. n : \mBbbN{}
2. k : \mBbbN{}
3. K : \mBbbQ{}Cube(k) List
4. [\%1] : no\_repeats(\mBbbQ{}Cube(k);K) \mwedge{} (\mforall{}c,d\mmember{}K. Compatible(c;d)) \mwedge{} (\mforall{}c\mmember{}K.dim(c) = n)
5. f : \mBbbQ{}Cube(k)
6. face-complex(k;K) \mmember{} \mBbbQ{}Cube(k) List
7. dim(f) = (n - 1)
8. u : \mBbbQ{}Cube(k)
9. v : \mBbbQ{}Cube(k) List
10. filter(\mlambda{}c.is-rat-cube-face(k;f;c);K) = [u / v]
\mvdash{} (\muparrow{}isOdd(||v|| + 1))
{}\mRightarrow{} (\mexists{}c:\mBbbQ{}Cube(k). ((c \mmember{} K) \mwedge{} (\muparrow{}Inhabited(c)) \mwedge{} f \mleq{} c \mwedge{} (dim(f) = (dim(c) - 1))))
By
Latex:
((D 0 THENA Auto)
THEN Thin (-1)
THEN (Assert (u \mmember{} filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)) BY
(RWO "-1" 0 THEN Auto))
THEN (RWO "member\_filter" (-1) THENA Auto)
THEN Reduce -1
THEN D -1)
Home
Index