Nuprl Lemma : q_le-elim
∀[r,s:ℚ].  (q_le(r;s) ~ qpositive(s + -(r)) ∨bqeq(r;s))
Proof
Definitions occuring in Statement : 
q_le: q_le(r;s), 
qpositive: qpositive(r), 
qmul: r * s, 
qadd: r + s, 
rationals: ℚ, 
qeq: qeq(r;s), 
bor: p ∨bq, 
uall: ∀[x:A]. B[x], 
minus: -n, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
q_le: q_le(r;s), 
uimplies: b supposing a, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
qsub: r - s
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
evalall-reduce
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
because_Cache, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[r,s:\mBbbQ{}].    (q\_le(r;s)  \msim{}  qpositive(s  +  -(r))  \mvee{}\msubb{}qeq(r;s))
Date html generated:
2016_05_15-PM-10_40_39
Last ObjectModification:
2015_12_27-PM-07_58_16
Theory : rationals
Home
Index