Nuprl Lemma : qdeq_wf
qdeq() ∈ EqDecider(ℚ)
Proof
Definitions occuring in Statement : 
qdeq: qdeq(), 
rationals: ℚ, 
deq: EqDecider(T), 
member: t ∈ T
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
deq: EqDecider(T), 
member: t ∈ T, 
qdeq: qdeq()
Lemmas referenced : 
istype-assert, 
assert-qeq, 
rationals_wf, 
qeq_wf2
Rules used in proof : 
applyEquality, 
productIsType, 
functionIsType, 
because_Cache, 
equalityIstype, 
independent_isectElimination, 
productElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
sqequalRule, 
universeIsType, 
inhabitedIsType, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
qdeq()  \mmember{}  EqDecider(\mBbbQ{})
Date html generated:
2019_10_29-AM-07_43_24
Last ObjectModification:
2019_10_18-AM-11_45_20
Theory : rationals
Home
Index