Nuprl Lemma : qdiv-int-elim

[p:ℤ]. ∀[q:ℤ-o].  ((p/q) ~ <p, q>)


Proof




Definitions occuring in Statement :  qdiv: (r/s) int_nzero: -o uall: [x:A]. B[x] pair: <a, b> int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] int_nzero: -o qdiv: (r/s) qinv: 1/r qmul: s callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt implies:  Q subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} top: Top bfalse: ff
Lemmas referenced :  one-mul mul-commutes evalall-sqequal product-valueall-type nequal_wf set-valueall-type int_nzero_wf evalall-reduce int-valueall-type valueall-type-has-valueall set_subtype_base int_subtype_base product_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination sqequalRule hypothesis lambdaFormation intEquality hypothesisEquality callbyvalueReduce lambdaEquality natural_numberEquality isintReduceTrue setElimination rename productEquality independent_functionElimination independent_pairEquality baseApply closedConclusion baseClosed applyEquality dependent_functionElimination equalityTransitivity equalitySymmetry sqequalAxiom isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[p:\mBbbZ{}].  \mforall{}[q:\mBbbZ{}\msupminus{}\msupzero{}].    ((p/q)  \msim{}  <p,  q>)



Date html generated: 2016_05_15-PM-10_39_46
Last ObjectModification: 2016_01_16-PM-09_36_33

Theory : rationals


Home Index