Nuprl Lemma : qdiv-int-elim
∀[p:ℤ]. ∀[q:ℤ-o].  ((p/q) ~ <p, q>)
Proof
Definitions occuring in Statement : 
qdiv: (r/s)
, 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
pair: <a, b>
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
int_nzero: ℤ-o
, 
qdiv: (r/s)
, 
qinv: 1/r
, 
qmul: r * s
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
top: Top
, 
bfalse: ff
Lemmas referenced : 
one-mul, 
mul-commutes, 
evalall-sqequal, 
product-valueall-type, 
nequal_wf, 
set-valueall-type, 
int_nzero_wf, 
evalall-reduce, 
int-valueall-type, 
valueall-type-has-valueall, 
set_subtype_base, 
int_subtype_base, 
product_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
hypothesis, 
lambdaFormation, 
intEquality, 
hypothesisEquality, 
callbyvalueReduce, 
lambdaEquality, 
natural_numberEquality, 
isintReduceTrue, 
setElimination, 
rename, 
productEquality, 
independent_functionElimination, 
independent_pairEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalAxiom, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[p:\mBbbZ{}].  \mforall{}[q:\mBbbZ{}\msupminus{}\msupzero{}].    ((p/q)  \msim{}  <p,  q>)
Date html generated:
2016_05_15-PM-10_39_46
Last ObjectModification:
2016_01_16-PM-09_36_33
Theory : rationals
Home
Index