Nuprl Lemma : qeq-equiv
EquivRel(ℤ ⋃ (ℤ × ℤ-o);r,s.qeq(r;s) = tt)
Proof
Definitions occuring in Statement : 
qeq: qeq(r;s)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
int_nzero: ℤ-o
, 
b-union: A ⋃ B
, 
btrue: tt
, 
bool: 𝔹
, 
product: x:A × B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
qeq-refl, 
qeq-sym, 
qeq-trans
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
hypothesis
Latex:
EquivRel(\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{});r,s.qeq(r;s)  =  tt)
Date html generated:
2016_05_15-PM-10_36_48
Last ObjectModification:
2015_12_27-PM-08_01_11
Theory : rationals
Home
Index