Nuprl Lemma : qeq-equiv

EquivRel(ℤ ⋃ (ℤ × ℤ-o);r,s.qeq(r;s) tt)


Proof




Definitions occuring in Statement :  qeq: qeq(r;s) equiv_rel: EquivRel(T;x,y.E[x; y]) int_nzero: -o b-union: A ⋃ B btrue: tt bool: 𝔹 product: x:A × B[x] int: equal: t ∈ T
Definitions unfolded in proof :  equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q cand: c∧ B
Lemmas referenced :  qeq-refl qeq-sym qeq-trans
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation cut lemma_by_obid hypothesis

Latex:
EquivRel(\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{});r,s.qeq(r;s)  =  tt)



Date html generated: 2016_05_15-PM-10_36_48
Last ObjectModification: 2015_12_27-PM-08_01_11

Theory : rationals


Home Index