Nuprl Lemma : qeq-equiv
EquivRel(ℤ ⋃ (ℤ × ℤ-o);r,s.qeq(r;s) = tt)
Proof
Definitions occuring in Statement : 
qeq: qeq(r;s), 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
int_nzero: ℤ-o, 
b-union: A ⋃ B, 
btrue: tt, 
bool: 𝔹, 
product: x:A × B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
and: P ∧ Q, 
cand: A c∧ B
Lemmas referenced : 
qeq-refl, 
qeq-sym, 
qeq-trans
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
hypothesis
Latex:
EquivRel(\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{});r,s.qeq(r;s)  =  tt)
 Date html generated: 
2016_05_15-PM-10_36_48
 Last ObjectModification: 
2015_12_27-PM-08_01_11
Theory : rationals
Home
Index