Nuprl Lemma : qeq-sym

Sym(ℤ ⋃ (ℤ × ℤ-o);r,s.qeq(r;s) tt)


Proof




Definitions occuring in Statement :  qeq: qeq(r;s) sym: Sym(T;x,y.E[x; y]) int_nzero: -o b-union: A ⋃ B btrue: tt bool: 𝔹 product: x:A × B[x] int: equal: t ∈ T
Definitions unfolded in proof :  sym: Sym(T;x,y.E[x; y]) all: x:A. B[x] implies:  Q qeq: qeq(r;s) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) btrue: tt squash: T prop: uiff: uiff(P;Q) and: P ∧ Q true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q bfalse: ff
Lemmas referenced :  valueall-type-has-valueall b-union_wf int_nzero_wf bunion-valueall-type int-valueall-type product-valueall-type set-valueall-type nequal_wf evalall-reduce equal_wf squash_wf true_wf eq_int_eq_true eqtt_to_assert assert_of_eq_int iff_weakening_equal equal-wf-T-base bool_wf qeq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution sqequalRule introduction extract_by_obid isectElimination thin intEquality productEquality hypothesis independent_isectElimination because_Cache lambdaEquality independent_functionElimination hypothesisEquality natural_numberEquality callbyvalueReduce imageElimination productElimination unionElimination equalityElimination isintReduceTrue applyEquality equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis addLevel imageMemberEquality baseClosed multiplyEquality setElimination rename

Latex:
Sym(\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{});r,s.qeq(r;s)  =  tt)



Date html generated: 2018_05_21-PM-11_43_44
Last ObjectModification: 2017_07_26-PM-06_42_56

Theory : rationals


Home Index