Nuprl Lemma : qeq-sym
Sym(ℤ ⋃ (ℤ × ℤ-o);r,s.qeq(r;s) = tt)
Proof
Definitions occuring in Statement : 
qeq: qeq(r;s), 
sym: Sym(T;x,y.E[x; y]), 
int_nzero: ℤ-o, 
b-union: A ⋃ B, 
btrue: tt, 
bool: 𝔹, 
product: x:A × B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
sym: Sym(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
qeq: qeq(r;s), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_nzero: ℤ-o, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
btrue: tt, 
squash: ↓T, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bfalse: ff
Lemmas referenced : 
valueall-type-has-valueall, 
b-union_wf, 
int_nzero_wf, 
bunion-valueall-type, 
int-valueall-type, 
product-valueall-type, 
set-valueall-type, 
nequal_wf, 
evalall-reduce, 
equal_wf, 
squash_wf, 
true_wf, 
eq_int_eq_true, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_weakening_equal, 
equal-wf-T-base, 
bool_wf, 
qeq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
intEquality, 
productEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
independent_functionElimination, 
hypothesisEquality, 
natural_numberEquality, 
callbyvalueReduce, 
imageElimination, 
productElimination, 
unionElimination, 
equalityElimination, 
isintReduceTrue, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
addLevel, 
imageMemberEquality, 
baseClosed, 
multiplyEquality, 
setElimination, 
rename
Latex:
Sym(\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{});r,s.qeq(r;s)  =  tt)
Date html generated:
2018_05_21-PM-11_43_44
Last ObjectModification:
2017_07_26-PM-06_42_56
Theory : rationals
Home
Index