Nuprl Lemma : qeq_wf
∀[r,s:ℤ ⋃ (ℤ × ℤ-o)].  (qeq(r;s) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
qeq: qeq(r;s)
, 
int_nzero: ℤ-o
, 
b-union: A ⋃ B
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
qeq: qeq(r;s)
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
btrue: tt
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_nzero: ℤ-o
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
assert: ↑b
, 
bfalse: ff
, 
false: False
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
Lemmas referenced : 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
eq_int_wf, 
int_nzero_wf, 
product-valueall-type, 
set-valueall-type, 
nequal_wf, 
bfalse_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
b-union_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
unionElimination, 
equalityElimination, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
callbyvalueReduce, 
because_Cache, 
isintReduceTrue, 
productEquality, 
lambdaEquality, 
independent_functionElimination, 
lambdaFormation, 
natural_numberEquality, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
multiplyEquality, 
setElimination, 
rename, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[r,s:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})].    (qeq(r;s)  \mmember{}  \mBbbB{})
Date html generated:
2018_05_21-PM-11_43_34
Last ObjectModification:
2017_07_26-PM-06_42_53
Theory : rationals
Home
Index