Nuprl Lemma : qeq_wf

[r,s:ℤ ⋃ (ℤ × ℤ-o)].  (qeq(r;s) ∈ 𝔹)


Proof




Definitions occuring in Statement :  qeq: qeq(r;s) int_nzero: -o b-union: A ⋃ B bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) qeq: qeq(r;s) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] int_nzero: -o it: uiff: uiff(P;Q) and: P ∧ Q assert: b bfalse: ff false: False exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb
Lemmas referenced :  valueall-type-has-valueall int-valueall-type evalall-reduce eq_int_wf int_nzero_wf product-valueall-type set-valueall-type nequal_wf bfalse_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot b-union_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution imageElimination productElimination thin unionElimination equalityElimination sqequalRule extract_by_obid isectElimination intEquality independent_isectElimination hypothesis hypothesisEquality callbyvalueReduce because_Cache isintReduceTrue productEquality lambdaEquality independent_functionElimination lambdaFormation natural_numberEquality voidElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity multiplyEquality setElimination rename axiomEquality isect_memberEquality

Latex:
\mforall{}[r,s:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})].    (qeq(r;s)  \mmember{}  \mBbbB{})



Date html generated: 2018_05_21-PM-11_43_34
Last ObjectModification: 2017_07_26-PM-06_42_53

Theory : rationals


Home Index