Nuprl Lemma : qless_trichot_qorder
∀a,b:ℚ.  (a < b ∨ (a = b ∈ ℚ) ∨ b < a)
Proof
Definitions occuring in Statement : 
qless: r < s, 
rationals: ℚ, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
qadd_grp: <ℚ+>, 
grp_car: |g|, 
pi1: fst(t), 
qless: r < s, 
guard: {T}
Lemmas referenced : 
grp_lt_trichot, 
qadd_grp_wf2, 
ocgrp_subtype_ocmon, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType
Latex:
\mforall{}a,b:\mBbbQ{}.    (a  <  b  \mvee{}  (a  =  b)  \mvee{}  b  <  a)
Date html generated:
2020_05_20-AM-09_15_04
Last ObjectModification:
2020_01_27-AM-09_32_52
Theory : rationals
Home
Index