Nuprl Lemma : qadd_grp_wf2

<ℚ+> ∈ OGrp


Proof




Definitions occuring in Statement :  qadd_grp: <ℚ+> member: t ∈ T ocgrp: OGrp
Definitions unfolded in proof :  prop: mon: Mon abmonoid: AbMon ocmon: OCMon uall: [x:A]. B[x] ocgrp: OGrp member: t ∈ T so_apply: x[s] so_lambda: λ2x.t[x] bfalse: ff uimplies: supposing a uiff: uiff(P;Q) ifthenelse: if then else fi  band: p ∧b q btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] infix_ap: y so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] and: P ∧ Q grp: Group{i} abgrp: AbGrp subtype_rel: A ⊆B monot: monot(T;x,y.R[x; y];f) grp_op: * grp_eq: =b pi2: snd(t) grp_le: b pi1: fst(t) grp_car: |g| qadd_grp: <ℚ+> rev_implies:  Q iff: ⇐⇒ Q connex: Connex(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) ulinorder: UniformLinorder(T;x,y.R[x; y]) or: P ∨ Q guard: {T} true: True squash: T false: False not: ¬A qsub: s bnot: ¬bb sq_type: SQType(T) exists: x:A. B[x] rev_uimplies: rev_uimplies(P;Q) assert: b cancel: Cancel(T;S;op) inverse: Inverse(T;op;id;inv) grp_inv: ~ grp_id: e cand: c∧ B
Lemmas referenced :  grp_inv_wf grp_id_wf grp_op_wf grp_car_wf inverse_wf monot_wf uall_wf cancel_wf eqtt_to_assert grp_eq_wf equal_wf grp_le_wf bool_wf infix_ap_wf assert_wf ulinorder_wf set_wf comm_wf mon_wf subtype_rel_sets qadd_grp_wf rationals_wf qadd_wf q_le_wf assert_witness q_le-elim assert-qeq assert_of_bor iff_weakening_uiff iff_transitivity or_wf qeq_wf2 int-subtype-rationals qmul_wf qpositive_wf bor_wf true_wf squash_wf qadd_positive iff_weakening_equal qadd_inv_assoc_q qadd_ac_1_q qadd_comm_q mon_assoc_q qinv_inv_q qinv_thru_op_q qminus_positive qsub_wf q_trichotomy qadd_ident band_wf iff_imp_equal_bool iff_wf assert_of_band assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert btrue_wf bfalse_wf assert_functionality_wrt_uiff mon_ident_q qinverse_q subtype_rel_self istype-universe istype-assert qadd_minus qadd_com
Rules used in proof :  because_Cache hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut dependent_set_memberEquality sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation functionEquality lambdaEquality sqequalRule productEquality cumulativity setEquality instantiate applyEquality isect_memberFormation independent_pairFormation addLevel orFunctionality axiomEquality isect_memberEquality natural_numberEquality minusEquality inrFormation inlFormation baseClosed imageMemberEquality imageElimination hyp_replacement universeEquality applyLambdaEquality voidElimination impliesFunctionality promote_hyp dependent_pairFormation inhabitedIsType universeIsType lambdaEquality_alt isectIsTypeImplies isect_memberEquality_alt equalityIstype isect_memberFormation_alt lambdaFormation_alt unionEquality unionIsType inlFormation_alt inrFormation_alt independent_pairEquality

Latex:
<\mBbbQ{}+>  \mmember{}  OGrp



Date html generated: 2020_05_20-AM-09_14_19
Last ObjectModification: 2020_01_25-AM-09_30_28

Theory : rationals


Home Index