Nuprl Lemma : qadd_grp_wf2
<ℚ+> ∈ OGrp
Proof
Definitions occuring in Statement : 
qadd_grp: <ℚ+>
, 
member: t ∈ T
, 
ocgrp: OGrp
Definitions unfolded in proof : 
prop: ℙ
, 
mon: Mon
, 
abmonoid: AbMon
, 
ocmon: OCMon
, 
uall: ∀[x:A]. B[x]
, 
ocgrp: OGrp
, 
member: t ∈ T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
bfalse: ff
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
band: p ∧b q
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
and: P ∧ Q
, 
grp: Group{i}
, 
abgrp: AbGrp
, 
subtype_rel: A ⊆r B
, 
monot: monot(T;x,y.R[x; y];f)
, 
grp_op: *
, 
grp_eq: =b
, 
pi2: snd(t)
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
grp_car: |g|
, 
qadd_grp: <ℚ+>
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
connex: Connex(T;x,y.R[x; y])
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
uorder: UniformOrder(T;x,y.R[x; y])
, 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
or: P ∨ Q
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
false: False
, 
not: ¬A
, 
qsub: r - s
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
assert: ↑b
, 
cancel: Cancel(T;S;op)
, 
inverse: Inverse(T;op;id;inv)
, 
grp_inv: ~
, 
grp_id: e
, 
cand: A c∧ B
Lemmas referenced : 
grp_inv_wf, 
grp_id_wf, 
grp_op_wf, 
grp_car_wf, 
inverse_wf, 
monot_wf, 
uall_wf, 
cancel_wf, 
eqtt_to_assert, 
grp_eq_wf, 
equal_wf, 
grp_le_wf, 
bool_wf, 
infix_ap_wf, 
assert_wf, 
ulinorder_wf, 
set_wf, 
comm_wf, 
mon_wf, 
subtype_rel_sets, 
qadd_grp_wf, 
rationals_wf, 
qadd_wf, 
q_le_wf, 
assert_witness, 
q_le-elim, 
assert-qeq, 
assert_of_bor, 
iff_weakening_uiff, 
iff_transitivity, 
or_wf, 
qeq_wf2, 
int-subtype-rationals, 
qmul_wf, 
qpositive_wf, 
bor_wf, 
true_wf, 
squash_wf, 
qadd_positive, 
iff_weakening_equal, 
qadd_inv_assoc_q, 
qadd_ac_1_q, 
qadd_comm_q, 
mon_assoc_q, 
qinv_inv_q, 
qinv_thru_op_q, 
qminus_positive, 
qsub_wf, 
q_trichotomy, 
qadd_ident, 
band_wf, 
iff_imp_equal_bool, 
iff_wf, 
assert_of_band, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
btrue_wf, 
bfalse_wf, 
assert_functionality_wrt_uiff, 
mon_ident_q, 
qinverse_q, 
subtype_rel_self, 
istype-universe, 
istype-assert, 
qadd_minus, 
qadd_com
Rules used in proof : 
because_Cache, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
productEquality, 
cumulativity, 
setEquality, 
instantiate, 
applyEquality, 
isect_memberFormation, 
independent_pairFormation, 
addLevel, 
orFunctionality, 
axiomEquality, 
isect_memberEquality, 
natural_numberEquality, 
minusEquality, 
inrFormation, 
inlFormation, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
hyp_replacement, 
universeEquality, 
applyLambdaEquality, 
voidElimination, 
impliesFunctionality, 
promote_hyp, 
dependent_pairFormation, 
inhabitedIsType, 
universeIsType, 
lambdaEquality_alt, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
equalityIstype, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
unionEquality, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
independent_pairEquality
Latex:
<\mBbbQ{}+>  \mmember{}  OGrp
Date html generated:
2020_05_20-AM-09_14_19
Last ObjectModification:
2020_01_25-AM-09_30_28
Theory : rationals
Home
Index