Nuprl Lemma : q_trichotomy

r:ℚ((↑qpositive(r)) ∨ (r 0 ∈ ℚ) ∨ (↑qpositive(-(r))))


Proof




Definitions occuring in Statement :  qpositive: qpositive(r) qmul: s rationals: assert: b all: x:A. B[x] or: P ∨ Q minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] nat_plus: + cand: c∧ B not: ¬A subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: qdiv: (r/s) top: Top ifthenelse: if then else fi  btrue: tt mk-rational: mk-rational(a;b) int_nzero: -o nequal: a ≠ b ∈  implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False bfalse: ff decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  q-elim nat_plus_properties assert-qeq int-subtype-rationals assert_wf qeq_wf2 not_wf equal-wf-base rationals_wf int_subtype_base qinv-elim qmul-elim isint-int mk-rational_wf full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf nequal_wf qpositive-elim qeq-elim decidable__or or_wf less_than_wf decidable__cand decidable__lt decidable__equal_int intformnot_wf intformor_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_or_lemma int_term_value_mul_lemma iff_transitivity bor_wf band_wf lt_int_wf iff_weakening_uiff assert_of_bor assert_of_band assert_of_lt_int assert_of_eq_int eq_int_wf qpositive_wf qmul_wf equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination hypothesis setElimination rename addLevel impliesFunctionality applyEquality sqequalRule natural_numberEquality independent_isectElimination because_Cache baseClosed isect_memberEquality voidElimination voidEquality dependent_set_memberEquality approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation multiplyEquality minusEquality isintReduceTrue productEquality baseApply closedConclusion unionElimination orFunctionality equalityTransitivity equalitySymmetry orLevelFunctionality hyp_replacement applyLambdaEquality

Latex:
\mforall{}r:\mBbbQ{}.  ((\muparrow{}qpositive(r))  \mvee{}  (r  =  0)  \mvee{}  (\muparrow{}qpositive(-(r))))



Date html generated: 2018_05_21-PM-11_49_33
Last ObjectModification: 2017_07_26-PM-06_43_41

Theory : rationals


Home Index