Nuprl Lemma : qpositive_wf
∀[r:ℚ]. (qpositive(r) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
qpositive: qpositive(r), 
rationals: ℚ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
btrue: tt, 
bfalse: ff, 
or: P ∨ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
int_nzero: ℤ-o, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
true: True, 
squash: ↓T, 
uiff: uiff(P;Q), 
has-valueall: has-valueall(a), 
has-value: (a)↓, 
callbyvalueall: callbyvalueall, 
uimplies: b supposing a, 
prop: ℙ, 
qeq: qeq(r;s), 
qpositive: qpositive(r), 
pi2: snd(t), 
ifthenelse: if b then t else f fi , 
unit: Unit, 
bool: 𝔹, 
tunion: ⋃x:A.B[x], 
b-union: A ⋃ B, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
quotient: x,y:A//B[x; y], 
rationals: ℚ, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
top: Top, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
nequal: a ≠ b ∈ T , 
gt: i > j, 
guard: {T}, 
sq_type: SQType(T), 
cand: A c∧ B
Lemmas referenced : 
assert_of_lt_int, 
assert_of_band, 
assert_of_bor, 
iff_weakening_uiff, 
iff_transitivity, 
iff_wf, 
assert_wf, 
less_than_wf, 
or_wf, 
eq_int_wf, 
band_wf, 
bor_wf, 
iff_imp_equal_bool, 
nequal_wf, 
set-valueall-type, 
product-valueall-type, 
int_subtype_base, 
true_wf, 
squash_wf, 
lt_int_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
evalall-reduce, 
int-valueall-type, 
valueall-type-has-valueall, 
rationals_wf, 
equal-wf-base, 
equal_wf, 
qeq_wf, 
equal-wf-T-base, 
int_nzero_wf, 
b-union_wf, 
bool_wf, 
int_formula_prop_wf, 
int_formula_prop_or_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformor_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
int_nzero_properties, 
neg_mul_arg_bounds, 
gt_wf, 
pos_mul_arg_bounds, 
subtype_base_sq, 
full-omega-unsat, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__equal_int, 
int_entire, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
int_formual_prop_imp_lemma, 
intformimplies_wf
Rules used in proof : 
orFunctionality, 
impliesFunctionality, 
addLevel, 
isintReduceTrue, 
independent_pairFormation, 
rename, 
setElimination, 
multiplyEquality, 
independent_pairEquality, 
closedConclusion, 
baseApply, 
imageMemberEquality, 
natural_numberEquality, 
lambdaEquality, 
applyEquality, 
callbyvalueReduce, 
independent_isectElimination, 
axiomEquality, 
dependent_functionElimination, 
baseClosed, 
hypothesisEquality, 
independent_functionElimination, 
equalityElimination, 
unionElimination, 
imageElimination, 
because_Cache, 
lambdaFormation, 
productEquality, 
intEquality, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
thin, 
productElimination, 
pertypeElimination, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
pointwiseFunctionalityForEquality, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
levelHypothesis, 
andLevelFunctionality, 
cumulativity, 
instantiate, 
promote_hyp, 
inlFormation, 
approximateComputation, 
inrFormation
Latex:
\mforall{}[r:\mBbbQ{}].  (qpositive(r)  \mmember{}  \mBbbB{})
Date html generated:
2018_05_21-PM-11_46_06
Last ObjectModification:
2017_07_26-PM-06_43_05
Theory : rationals
Home
Index