Nuprl Lemma : neg_mul_arg_bounds

a,b:ℤ.  (a b < ⇐⇒ (a < 0 ∧ (b > 0)) ∨ ((a > 0) ∧ b < 0))


Proof




Definitions occuring in Statement :  less_than: a < b gt: i > j all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q label: ...$L... t gt: i > j rev_implies:  Q decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: true: True squash: T subtype_rel: A ⊆B guard: {T} uiff: uiff(P;Q)
Lemmas referenced :  pos_mul_arg_bounds istype-int decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermMultiply_wf itermMinus_wf itermVar_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_wf gt_wf less_than_wf itermConstant_wf int_term_value_constant_lemma squash_wf true_wf subtype_rel_self iff_weakening_equal iff_weakening_uiff minus_mono_wrt_lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin minusEquality hypothesisEquality Error :inhabitedIsType,  hypothesis productElimination because_Cache unionElimination isectElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination sqequalRule Error :universeIsType,  multiplyEquality Error :unionIsType,  Error :productIsType,  applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed instantiate universeEquality independent_pairFormation promote_hyp Error :inlFormation_alt,  Error :inrFormation_alt

Latex:
\mforall{}a,b:\mBbbZ{}.    (a  *  b  <  0  \mLeftarrow{}{}\mRightarrow{}  (a  <  0  \mwedge{}  (b  >  0))  \mvee{}  ((a  >  0)  \mwedge{}  b  <  0))



Date html generated: 2019_06_20-PM-01_13_34
Last ObjectModification: 2018_10_03-PM-11_00_35

Theory : int_2


Home Index