Nuprl Lemma : mk-rational_wf
∀[a:ℤ]. ∀[b:ℤ-o].  (mk-rational(a;b) ∈ ℚ)
Proof
Definitions occuring in Statement : 
mk-rational: mk-rational(a;b)
, 
rationals: ℚ
, 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk-rational: mk-rational(a;b)
, 
qeq: qeq(r;s)
, 
rationals: ℚ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
pi2: snd(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
assert_of_eq_int, 
eq_int_wf, 
eqtt_to_assert, 
evalall-reduce, 
nequal_wf, 
set-valueall-type, 
int-valueall-type, 
product-valueall-type, 
valueall-type-has-valueall, 
ifthenelse_wf, 
bfalse_wf, 
quotient-member-eq, 
qeq-equiv, 
btrue_wf, 
qeq_wf, 
bool_wf, 
equal_wf, 
b-union_wf, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
intEquality, 
productEquality, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
dependent_pairEquality, 
independent_pairEquality, 
instantiate, 
universeEquality, 
baseClosed, 
lambdaFormation, 
natural_numberEquality, 
callbyvalueReduce, 
multiplyEquality, 
setElimination, 
rename, 
productElimination
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (mk-rational(a;b)  \mmember{}  \mBbbQ{})
Date html generated:
2016_05_15-PM-10_37_56
Last ObjectModification:
2016_01_16-PM-09_37_05
Theory : rationals
Home
Index