Nuprl Lemma : mk-rational_wf

[a:ℤ]. ∀[b:ℤ-o].  (mk-rational(a;b) ∈ ℚ)


Proof




Definitions occuring in Statement :  mk-rational: mk-rational(a;b) rationals: int_nzero: -o uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-rational: mk-rational(a;b) qeq: qeq(r;s) rationals: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] implies:  Q b-union: A ⋃ B tunion: x:A.B[x] ifthenelse: if then else fi  bfalse: ff pi2: snd(t) so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  assert_of_eq_int eq_int_wf eqtt_to_assert evalall-reduce nequal_wf set-valueall-type int-valueall-type product-valueall-type valueall-type-has-valueall ifthenelse_wf bfalse_wf quotient-member-eq qeq-equiv btrue_wf qeq_wf bool_wf equal_wf b-union_wf int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isect_memberEquality isectElimination thin hypothesisEquality because_Cache intEquality productEquality lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination imageMemberEquality dependent_pairEquality independent_pairEquality instantiate universeEquality baseClosed lambdaFormation natural_numberEquality callbyvalueReduce multiplyEquality setElimination rename productElimination

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (mk-rational(a;b)  \mmember{}  \mBbbQ{})



Date html generated: 2016_05_15-PM-10_37_56
Last ObjectModification: 2016_01_16-PM-09_37_05

Theory : rationals


Home Index