Nuprl Lemma : qminus_positive

[r:ℚ]. ¬↑qpositive(-(r)) supposing ↑qpositive(r)


Proof




Definitions occuring in Statement :  qpositive: qpositive(r) qmul: s rationals: assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] exists: x:A. B[x] nat_plus: + cand: c∧ B not: ¬A subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: qdiv: (r/s) top: Top ifthenelse: if then else fi  btrue: tt mk-rational: mk-rational(a;b) int_nzero: -o nequal: a ≠ b ∈  implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False bfalse: ff or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  q-elim nat_plus_properties assert-qeq int-subtype-rationals assert_wf qeq_wf2 not_wf equal-wf-base rationals_wf int_subtype_base qinv-elim qmul-elim isint-int mk-rational_wf satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf nequal_wf qpositive-elim mul-commutes mul-associates one-mul intformor_wf itermMultiply_wf int_formula_prop_or_lemma int_term_value_mul_lemma or_wf less_than_wf iff_transitivity bor_wf band_wf lt_int_wf iff_weakening_uiff assert_of_bor assert_of_band assert_of_lt_int isect_wf qpositive_wf qmul_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination hypothesis setElimination rename addLevel impliesFunctionality applyEquality sqequalRule natural_numberEquality because_Cache independent_isectElimination baseClosed isect_memberEquality voidElimination voidEquality dependent_set_memberEquality lambdaFormation dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll multiplyEquality minusEquality isintReduceTrue productEquality independent_functionElimination orFunctionality cumulativity isectEquality hyp_replacement equalitySymmetry Error :applyLambdaEquality,  equalityTransitivity

Latex:
\mforall{}[r:\mBbbQ{}].  \mneg{}\muparrow{}qpositive(-(r))  supposing  \muparrow{}qpositive(r)



Date html generated: 2016_10_25-AM-11_51_20
Last ObjectModification: 2016_07_12-AM-07_48_03

Theory : rationals


Home Index