Nuprl Lemma : qlog-ext
∀e:{e:ℚ| 0 < e} . ∀q:{q:ℚ| (0 ≤ q) ∧ q < 1} .  {n:ℕ+| ((e ≤ 1) ⇒ (e ≤ q ↑ n - 1)) ∧ q ↑ n < e} 
Proof
Definitions occuring in Statement : 
qexp: r ↑ n, 
qle: r ≤ s, 
qless: r < s, 
rationals: ℚ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
subtract: n - m, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
qlog-exists, 
decidable__qle, 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
bor: p ∨bq, 
btrue: tt, 
uniform-comp-nat-induction, 
qlog-lemma-ext, 
genrec-ap: genrec-ap, 
decidable__equal_int, 
decidable__int_equal
Lemmas referenced : 
qlog-exists, 
lifting-strict-decide, 
top_wf, 
equal_wf, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
lifting-strict-int_eq, 
decidable__qle, 
uniform-comp-nat-induction, 
qlog-lemma-ext, 
decidable__equal_int, 
decidable__int_equal
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueDecide, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
baseApply, 
closedConclusion, 
decideExceptionCases, 
inrFormation, 
because_Cache, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation
Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}q:\{q:\mBbbQ{}|  (0  \mleq{}  q)  \mwedge{}  q  <  1\}  .    \{n:\mBbbN{}\msupplus{}|  ((e  \mleq{}  1)  {}\mRightarrow{}  (e  \mleq{}  q  \muparrow{}  n  -  1))  \mwedge{}  q  \muparrow{}  n  <  e\} 
Date html generated:
2018_05_22-AM-00_14_19
Last ObjectModification:
2017_07_26-PM-06_52_38
Theory : rationals
Home
Index