Step
*
1
of Lemma
qmax-list-bounds
1. L : ℚ List
2. 0 < ||L||
3. x : ℚ
⊢ qmax-list(L) ≤ x
⇐⇒ (∀y∈L.y ≤ x)
BY
{ (((InstLemma `combine-list-rel-and` [⌜ℚ⌝;⌜λ2x y.qmax(x;y)⌝;⌜λ2x y.y ≤ x⌝;⌜L⌝;⌜x⌝]⋅ THENA Try (Complete (Auto)))
THENM (Fold `qmax-list` (-1) THEN NthHyp (-1))
)
THEN skip{Auto}
) }
1
.....antecedent.....
1. L : ℚ List
2. 0 < ||L||
3. x : ℚ
⊢ ∀x,y,z:ℚ. (qmax(y;z) ≤ x
⇐⇒ (y ≤ x) ∧ (z ≤ x))
2
.....antecedent.....
1. L : ℚ List
2. 0 < ||L||
3. x : ℚ
⊢ 0 < ||L|| ∧ Assoc(ℚ;λx,y. qmax(x;y))
Latex:
Latex:
1. L : \mBbbQ{} List
2. 0 < ||L||
3. x : \mBbbQ{}
\mvdash{} qmax-list(L) \mleq{} x \mLeftarrow{}{}\mRightarrow{} (\mforall{}y\mmember{}L.y \mleq{} x)
By
Latex:
(((InstLemma `combine-list-rel-and` [\mkleeneopen{}\mBbbQ{}\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x y.qmax(x;y)\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x y.y \mleq{} x\mkleeneclose{};\mkleeneopen{}L\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}
THENA Try (Complete (Auto))
)
THENM (Fold `qmax-list` (-1) THEN NthHyp (-1))
)
THEN skip\{Auto\}
)
Home
Index