Nuprl Lemma : qminus-minus
∀[x:ℤ]. (-(x) ~ -x)
Proof
Definitions occuring in Statement : 
qmul: r * s, 
uall: ∀[x:A]. B[x], 
minus: -n, 
natural_number: $n, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
qmul: r * s, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uimplies: b supposing a, 
has-value: (a)↓, 
has-valueall: has-valueall(a)
Lemmas referenced : 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
minus-one-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
sqleReflexivity, 
isintReduceTrue, 
minusEquality, 
natural_numberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
sqequalAxiom
Latex:
\mforall{}[x:\mBbbZ{}].  (-(x)  \msim{}  -x)
Date html generated:
2016_05_15-PM-10_37_51
Last ObjectModification:
2015_12_27-PM-07_59_46
Theory : rationals
Home
Index