Nuprl Lemma : qmul_preserves_qle2
∀[a,b,c:ℚ].  ((c * a) ≤ (c * b)) supposing ((a ≤ b) and (0 ≤ c))
Proof
Definitions occuring in Statement : 
qle: r ≤ s, 
qmul: r * s, 
rationals: ℚ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
true: True, 
qle: r ≤ s, 
grp_leq: a ≤ b, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
infix_ap: x f y, 
grp_le: ≤b, 
pi1: fst(t), 
pi2: snd(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
qmul: r * s, 
btrue: tt, 
lt_int: i <z j, 
bfalse: ff, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
qle-iff, 
qmul_wf, 
qle_wf, 
int-subtype-rationals, 
rationals_wf, 
qle_witness, 
qmul_preserves_qle, 
squash_wf, 
true_wf, 
qmul_zero_qrng, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
unionElimination, 
isectElimination, 
isect_memberFormation, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((c  *  a)  \mleq{}  (c  *  b))  supposing  ((a  \mleq{}  b)  and  (0  \mleq{}  c))
Date html generated:
2016_10_25-PM-00_07_42
Last ObjectModification:
2016_07_12-AM-07_50_32
Theory : rationals
Home
Index