Step
*
2
of Lemma
rat-complex-boundary-remove1
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. c1 : ℚCube(k)
8. (c1 ∈ K)
9. ↑Inhabited(c1)
10. f ≤ c1
11. dim(f) = (dim(c1) - 1) ∈ ℤ
12. ↑in-complex-boundary(k;f;K)
13. ¬f ≤ c
⊢ (∃c1:ℚCube(k). (((c1 ∈ K) ∧ (¬(c1 = c ∈ ℚCube(k)))) ∧ (↑Inhabited(c1)) ∧ f ≤ c1 ∧ (dim(f) = (dim(c1) - 1) ∈ ℤ)))
∧ (↑in-complex-boundary(k;f;filter(λa.(¬brceq(k;a;c));K)))
BY
{ D 0 }
1
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. c1 : ℚCube(k)
8. (c1 ∈ K)
9. ↑Inhabited(c1)
10. f ≤ c1
11. dim(f) = (dim(c1) - 1) ∈ ℤ
12. ↑in-complex-boundary(k;f;K)
13. ¬f ≤ c
⊢ ∃c1:ℚCube(k). (((c1 ∈ K) ∧ (¬(c1 = c ∈ ℚCube(k)))) ∧ (↑Inhabited(c1)) ∧ f ≤ c1 ∧ (dim(f) = (dim(c1) - 1) ∈ ℤ))
2
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. c1 : ℚCube(k)
8. (c1 ∈ K)
9. ↑Inhabited(c1)
10. f ≤ c1
11. dim(f) = (dim(c1) - 1) ∈ ℤ
12. ↑in-complex-boundary(k;f;K)
13. ¬f ≤ c
⊢ ↑in-complex-boundary(k;f;filter(λa.(¬brceq(k;a;c));K))
Latex:
Latex:
1. k : \mBbbN{}
2. n : \mBbbN{}
3. K : n-dim-complex
4. c : \mBbbQ{}Cube(k)
5. (c \mmember{} K)
6. f : \mBbbQ{}Cube(k)
7. c1 : \mBbbQ{}Cube(k)
8. (c1 \mmember{} K)
9. \muparrow{}Inhabited(c1)
10. f \mleq{} c1
11. dim(f) = (dim(c1) - 1)
12. \muparrow{}in-complex-boundary(k;f;K)
13. \mneg{}f \mleq{} c
\mvdash{} (\mexists{}c1:\mBbbQ{}Cube(k). (((c1 \mmember{} K) \mwedge{} (\mneg{}(c1 = c))) \mwedge{} (\muparrow{}Inhabited(c1)) \mwedge{} f \mleq{} c1 \mwedge{} (dim(f) = (dim(c1) - 1))))
\mwedge{} (\muparrow{}in-complex-boundary(k;f;filter(\mlambda{}a.(\mneg{}\msubb{}rceq(k;a;c));K)))
By
Latex:
D 0
Home
Index