Step
*
of Lemma
rat-interval-face-dimension
∀J:ℚInterval. ((↑Inhabited(J))
⇒ (∀I:ℚInterval. (I ≤ J
⇒ ((I = J ∈ ℚInterval) ∨ (dim(I) = (dim(J) - 1) ∈ ℤ)))))
BY
{ ((D 0 THENA Auto)
THEN D -1
THEN RepUR ``rat-interval-face inhabited-rat-interval`` 0
THEN Decide ⌜J1 = J2 ∈ ℚ⌝⋅
THEN Auto) }
1
1. J1 : ℚ
2. J2 : ℚ
3. J1 = J2 ∈ ℚ
4. ↑q_le(J1;J2)
5. I : ℚInterval
6. (I = [J1] ∈ ℚInterval) ∨ (I = [J2] ∈ ℚInterval) ∨ (I = <J1, J2> ∈ ℚInterval)
⊢ (I = <J1, J2> ∈ ℚInterval) ∨ (dim(I) = (dim(<J1, J2>) - 1) ∈ ℤ)
2
1. J1 : ℚ
2. J2 : ℚ
3. ¬(J1 = J2 ∈ ℚ)
4. ↑q_le(J1;J2)
5. I : ℚInterval
6. (I = [J1] ∈ ℚInterval) ∨ (I = [J2] ∈ ℚInterval) ∨ (I = <J1, J2> ∈ ℚInterval)
⊢ (I = <J1, J2> ∈ ℚInterval) ∨ (dim(I) = (dim(<J1, J2>) - 1) ∈ ℤ)
Latex:
Latex:
\mforall{}J:\mBbbQ{}Interval. ((\muparrow{}Inhabited(J)) {}\mRightarrow{} (\mforall{}I:\mBbbQ{}Interval. (I \mleq{} J {}\mRightarrow{} ((I = J) \mvee{} (dim(I) = (dim(J) - 1))))))
By
Latex:
((D 0 THENA Auto)
THEN D -1
THEN RepUR ``rat-interval-face inhabited-rat-interval`` 0
THEN Decide \mkleeneopen{}J1 = J2\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index