Nuprl Lemma : rat-point-in-cube_wf

[k:ℕ]. ∀[x:ℕk ⟶ ℚ]. ∀[c:ℚCube(k)].  (rat-point-in-cube(k;x;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  rat-point-in-cube: rat-point-in-cube(k;x;c) rational-cube: Cube(k) rationals: int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rat-point-in-cube: rat-point-in-cube(k;x;c) prop: all: x:A. B[x] nat: and: P ∧ Q rational-cube: Cube(k) implies:  Q rational-interval: Interval pi1: fst(t) pi2: snd(t)
Lemmas referenced :  int_seg_wf qle_wf rational-cube_wf rationals_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis productEquality applyEquality hypothesisEquality inhabitedIsType lambdaFormation_alt productElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies functionIsType

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    (rat-point-in-cube(k;x;c)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-09_18_05
Last ObjectModification: 2019_11_02-PM-04_21_53

Theory : rationals


Home Index