Nuprl Lemma : rat-point-in-cube_wf
∀[k:ℕ]. ∀[x:ℕk ⟶ ℚ]. ∀[c:ℚCube(k)].  (rat-point-in-cube(k;x;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
rational-cube: ℚCube(k)
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
and: P ∧ Q
, 
rational-cube: ℚCube(k)
, 
implies: P 
⇒ Q
, 
rational-interval: ℚInterval
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
int_seg_wf, 
qle_wf, 
rational-cube_wf, 
rationals_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
productEquality, 
applyEquality, 
hypothesisEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
productElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    (rat-point-in-cube(k;x;c)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-09_18_05
Last ObjectModification:
2019_11_02-PM-04_21_53
Theory : rationals
Home
Index