Step
*
1
1
1
of Lemma
rational-truncate
1. q : ℚ
2. e : {e:ℚ| 0 < e}
3. e < 1
4. v : ∀q:ℚ. ∀e:{e:ℚ| 0 < e ∧ e < 1} . (∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))])
5. TERMOF{rational-truncate1:o, 1:l}
= v
∈ (∀q:ℚ. ∀e:{e:ℚ| 0 < e ∧ e < 1} . (∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))]))
⊢ v q e ∈ ℚ
BY
{ DoSubsume }
1
1. q : ℚ
2. e : {e:ℚ| 0 < e}
3. e < 1
4. v : ∀q:ℚ. ∀e:{e:ℚ| 0 < e ∧ e < 1} . (∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))])
5. TERMOF{rational-truncate1:o, 1:l}
= v
∈ (∀q:ℚ. ∀e:{e:ℚ| 0 < e ∧ e < 1} . (∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))]))
⊢ v q e ∈ ∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))]
2
1. q : ℚ
2. e : {e:ℚ| 0 < e}
3. e < 1
4. v : ∀q:ℚ. ∀e:{e:ℚ| 0 < e ∧ e < 1} . (∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))])
5. TERMOF{rational-truncate1:o, 1:l}
= v
∈ (∀q:ℚ. ∀e:{e:ℚ| 0 < e ∧ e < 1} . (∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))]))
6. (v q e) = (v q e) ∈ (∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))])
⊢ (∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))]) ⊆r ℚ
Latex:
Latex:
1. q : \mBbbQ{}
2. e : \{e:\mBbbQ{}| 0 < e\}
3. e < 1
4. v : \mforall{}q:\mBbbQ{}. \mforall{}e:\{e:\mBbbQ{}| 0 < e \mwedge{} e < 1\} .
(\mexists{}p:\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{} [((|q - (fst(p)/snd(p))| \mleq{} e) \mwedge{} (((snd(p)) * e) \mleq{} 2))])
5. TERMOF\{rational-truncate1:o, 1:l\} = v
\mvdash{} v q e \mmember{} \mBbbQ{}
By
Latex:
DoSubsume
Home
Index