Step
*
3
1
of Lemma
rational_set_blt
1. a4 : ℤ
2. a2 : ℤ
3. a3 : ℤ-o
4. 0 < a3
⊢ (((0 <z a2 + (((-1) * a4) * a3) ∧b tt) ∨b(a2 + (((-1) * a4) * a3) <z 0 ∧b ff)) ∨b(a4 * a3 =z a2))
∧b (¬b(((0 <z (a4 * a3) + ((-1) * a2) ∧b tt) ∨b((a4 * a3) + ((-1) * a2) <z 0 ∧b ff)) ∨b(a2 =z a4 * a3)))
= a3 * a4 <z a2
BY
{ ((RWW "band_ff_simp band_tt_simp bor_ff_simp" 0 THENA Auto)
THEN Reduce 0
THEN (BLemma `iff_imp_equal_bool` THENM RW assert_pushdownC 0)
THEN Auto) }
Latex:
Latex:
1. a4 : \mBbbZ{}
2. a2 : \mBbbZ{}
3. a3 : \mBbbZ{}\msupminus{}\msupzero{}
4. 0 < a3
\mvdash{} (((0 <z a2 + (((-1) * a4) * a3) \mwedge{}\msubb{} tt) \mvee{}\msubb{}(a2 + (((-1) * a4) * a3) <z 0 \mwedge{}\msubb{} ff)) \mvee{}\msubb{}(a4 * a3 =\msubz{} a2))
\mwedge{}\msubb{} (\mneg{}\msubb{}(((0 <z (a4 * a3) + ((-1) * a2) \mwedge{}\msubb{} tt) \mvee{}\msubb{}((a4 * a3) + ((-1) * a2) <z 0 \mwedge{}\msubb{} ff))
\mvee{}\msubb{}(a2 =\msubz{} a4 * a3)))
= a3 * a4 <z a2
By
Latex:
((RWW "band\_ff\_simp band\_tt\_simp bor\_ff\_simp" 0 THENA Auto)
THEN Reduce 0
THEN (BLemma `iff\_imp\_equal\_bool` THENM RW assert\_pushdownC 0)
THEN Auto)
Home
Index