Step
*
1
2
1
of Lemma
rounded-numerator-property
1. k : ℕ+
2. p : ℤ
3. q : ℤ
4. ¬0 < (k * p) + ((-1) * q * ((k * p) ÷ q))
5. 0 < q
6. ¬(q = 0 ∈ ℚ)
7. ¬↑qeq(q;0)
8. k * p rem q < 0
⊢ (-1) * (k * p rem q) < q
BY
{ (Decide ⌜0 ≤ p⌝⋅ THENA Auto)⋅ }
1
1. k : ℕ+
2. p : ℤ
3. q : ℤ
4. ¬0 < (k * p) + ((-1) * q * ((k * p) ÷ q))
5. 0 < q
6. ¬(q = 0 ∈ ℚ)
7. ¬↑qeq(q;0)
8. k * p rem q < 0
9. 0 ≤ p
⊢ (-1) * (k * p rem q) < q
2
1. k : ℕ+
2. p : ℤ
3. q : ℤ
4. ¬0 < (k * p) + ((-1) * q * ((k * p) ÷ q))
5. 0 < q
6. ¬(q = 0 ∈ ℚ)
7. ¬↑qeq(q;0)
8. k * p rem q < 0
9. ¬(0 ≤ p)
⊢ (-1) * (k * p rem q) < q
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. p : \mBbbZ{}
3. q : \mBbbZ{}
4. \mneg{}0 < (k * p) + ((-1) * q * ((k * p) \mdiv{} q))
5. 0 < q
6. \mneg{}(q = 0)
7. \mneg{}\muparrow{}qeq(q;0)
8. k * p rem q < 0
\mvdash{} (-1) * (k * p rem q) < q
By
Latex:
(Decide \mkleeneopen{}0 \mleq{} p\mkleeneclose{}\mcdot{} THENA Auto)\mcdot{}
Home
Index