Step
*
4
of Lemma
sbhomout_wf
1. u : ℕ2
2. v : ℕ2 List
3. ∀x:ℕ. ∀[a,b,c,d:ℕ]. (((a + b + c + d) ≤ x)
⇒ 0 < a + b
⇒ 0 < c + d
⇒ (sbhomout(a;b;c;d;v) ∈ ℕ2 List))
4. x : ℤ
5. 0 < x
6. ∀[a,b,c,d:ℕ]. (((a + b + c + d) ≤ (x - 1))
⇒ 0 < a + b
⇒ 0 < c + d
⇒ (sbhomout(a;b;c;d;[u / v]) ∈ ℕ2 List))
7. a : ℕ
8. b : ℕ
9. c : ℕ
10. d : ℕ
11. ¬↑mtge1(c;d;a;b)
12. ¬↑mtge1(a;b;c;d)
13. (a + b + c + d) ≤ x
14. 0 < a + b
15. 0 < c + d
16. ff ∈ 𝔹
17. ff ∈ 𝔹
18. ¬(u = 0 ∈ ℤ)
⊢ sbhomout(a;a + b;c;c + d;v) ∈ ℕ2 List
BY
{ ((InstHyp [⌜(a * 2) + b + (c * 2) + d⌝] 3⋅ THENA Auto) THEN BHyp -1 THEN Auto') }
Latex:
Latex:
1. u : \mBbbN{}2
2. v : \mBbbN{}2 List
3. \mforall{}x:\mBbbN{}
\mforall{}[a,b,c,d:\mBbbN{}].
(((a + b + c + d) \mleq{} x) {}\mRightarrow{} 0 < a + b {}\mRightarrow{} 0 < c + d {}\mRightarrow{} (sbhomout(a;b;c;d;v) \mmember{} \mBbbN{}2 List))
4. x : \mBbbZ{}
5. 0 < x
6. \mforall{}[a,b,c,d:\mBbbN{}].
(((a + b + c + d) \mleq{} (x - 1))
{}\mRightarrow{} 0 < a + b
{}\mRightarrow{} 0 < c + d
{}\mRightarrow{} (sbhomout(a;b;c;d;[u / v]) \mmember{} \mBbbN{}2 List))
7. a : \mBbbN{}
8. b : \mBbbN{}
9. c : \mBbbN{}
10. d : \mBbbN{}
11. \mneg{}\muparrow{}mtge1(c;d;a;b)
12. \mneg{}\muparrow{}mtge1(a;b;c;d)
13. (a + b + c + d) \mleq{} x
14. 0 < a + b
15. 0 < c + d
16. ff \mmember{} \mBbbB{}
17. ff \mmember{} \mBbbB{}
18. \mneg{}(u = 0)
\mvdash{} sbhomout(a;a + b;c;c + d;v) \mmember{} \mBbbN{}2 List
By
Latex:
((InstHyp [\mkleeneopen{}(a * 2) + b + (c * 2) + d\mkleeneclose{}] 3\mcdot{} THENA Auto) THEN BHyp -1 THEN Auto')
Home
Index