Step
*
1
1
2
1
of Lemma
square-between-lemma3
1. a : ℕ
2. b : ℕ+
3. n : ℕ+
4. q : ℚ
5. rm : ℤ
6. dv : ℤ
7. (a * n) = ((dv * b) + rm) ∈ ℤ
8. 0 ≤ dv
9. 0 ≤ rm
10. rm < b
11. (dv/n) ≤ (q * q)
12. n * q * q < dv + 1
13. 0 ≤ q
14. (a/b) - (1/n) < q * q
⊢ n * q * q < 1 + ((a/b) * n)
BY
{ TACTIC:Assert ⌜(dv + 1) ≤ (1 + ((a/b) * n))⌝⋅ }
1
.....assertion.....
1. a : ℕ
2. b : ℕ+
3. n : ℕ+
4. q : ℚ
5. rm : ℤ
6. dv : ℤ
7. (a * n) = ((dv * b) + rm) ∈ ℤ
8. 0 ≤ dv
9. 0 ≤ rm
10. rm < b
11. (dv/n) ≤ (q * q)
12. n * q * q < dv + 1
13. 0 ≤ q
14. (a/b) - (1/n) < q * q
⊢ (dv + 1) ≤ (1 + ((a/b) * n))
2
1. a : ℕ
2. b : ℕ+
3. n : ℕ+
4. q : ℚ
5. rm : ℤ
6. dv : ℤ
7. (a * n) = ((dv * b) + rm) ∈ ℤ
8. 0 ≤ dv
9. 0 ≤ rm
10. rm < b
11. (dv/n) ≤ (q * q)
12. n * q * q < dv + 1
13. 0 ≤ q
14. (a/b) - (1/n) < q * q
15. (dv + 1) ≤ (1 + ((a/b) * n))
⊢ n * q * q < 1 + ((a/b) * n)
Latex:
Latex:
1. a : \mBbbN{}
2. b : \mBbbN{}\msupplus{}
3. n : \mBbbN{}\msupplus{}
4. q : \mBbbQ{}
5. rm : \mBbbZ{}
6. dv : \mBbbZ{}
7. (a * n) = ((dv * b) + rm)
8. 0 \mleq{} dv
9. 0 \mleq{} rm
10. rm < b
11. (dv/n) \mleq{} (q * q)
12. n * q * q < dv + 1
13. 0 \mleq{} q
14. (a/b) - (1/n) < q * q
\mvdash{} n * q * q < 1 + ((a/b) * n)
By
Latex:
TACTIC:Assert \mkleeneopen{}(dv + 1) \mleq{} (1 + ((a/b) * n))\mkleeneclose{}\mcdot{}
Home
Index