Nuprl Lemma : co-retraction-monic
∀[C:SmallCategory]. ∀[y,z:cat-ob(C)]. ∀[f:cat-arrow(C) y z]. monic(f) supposing co-retraction(f)
Proof
Definitions occuring in Statement :
cat-monic: monic(f)
,
cat-co-retraction: co-retraction(f)
,
cat-arrow: cat-arrow(C)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
apply: f a
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
cat-monic: monic(f)
,
member: t ∈ T
,
cat-co-retraction: co-retraction(f)
,
exists: ∃x:A. B[x]
,
cat-inverse: fg=1
,
prop: ℙ
,
true: True
,
squash: ↓T
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
and: P ∧ Q
,
guard: {T}
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
Lemmas referenced :
equal_wf,
cat-arrow_wf,
cat-comp_wf,
cat-co-retraction_wf,
cat-ob_wf,
small-category_wf,
squash_wf,
true_wf,
cat-comp-assoc,
cat-comp-ident,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
rename,
hypothesis,
extract_by_obid,
isectElimination,
applyEquality,
hypothesisEquality,
sqequalRule,
isect_memberEquality,
axiomEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
natural_numberEquality,
lambdaEquality,
imageElimination,
universeEquality,
dependent_functionElimination,
imageMemberEquality,
baseClosed,
independent_isectElimination,
independent_functionElimination
Latex:
\mforall{}[C:SmallCategory]. \mforall{}[y,z:cat-ob(C)]. \mforall{}[f:cat-arrow(C) y z]. monic(f) supposing co-retraction(f)
Date html generated:
2020_05_20-AM-07_50_26
Last ObjectModification:
2017_07_28-AM-09_19_07
Theory : small!categories
Home
Index