Nuprl Lemma : equal-functors
∀[A,B:SmallCategory]. ∀[F,G:Functor(A;B)].
(F = G ∈ Functor(A;B)) supposing
((∀x,y:cat-ob(A). ∀f:cat-arrow(A) x y. ((F x y f) = (G x y f) ∈ (cat-arrow(B) (F x) (F y)))) and
(∀x:cat-ob(A). ((F x) = (G x) ∈ cat-ob(B))))
Proof
Definitions occuring in Statement :
functor-arrow: arrow(F)
,
functor-ob: ob(F)
,
cat-functor: Functor(C1;C2)
,
cat-arrow: cat-arrow(C)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
apply: f a
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
cat-functor: Functor(C1;C2)
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
top: Top
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
cand: A c∧ B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
ob_pair_lemma,
arrow_pair_lemma,
equal_wf,
cat-ob_wf,
iff_weakening_equal,
cat-arrow_wf,
all_wf,
cat-id_wf,
cat-comp_wf,
functor-ob_wf,
functor-arrow_wf,
subtype_rel-equal,
squash_wf,
true_wf,
cat-functor_wf,
small-category_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
setElimination,
thin,
rename,
productElimination,
sqequalRule,
extract_by_obid,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
dependent_set_memberEquality,
dependent_pairEquality,
functionExtensionality,
applyEquality,
lambdaEquality,
imageElimination,
isectElimination,
because_Cache,
hypothesisEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
universeEquality,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
independent_functionElimination,
functionEquality,
independent_pairFormation,
productEquality,
instantiate,
axiomEquality
Latex:
\mforall{}[A,B:SmallCategory]. \mforall{}[F,G:Functor(A;B)].
(F = G) supposing
((\mforall{}x,y:cat-ob(A). \mforall{}f:cat-arrow(A) x y. ((F x y f) = (G x y f))) and
(\mforall{}x:cat-ob(A). ((F x) = (G x))))
Date html generated:
2020_05_20-AM-07_53_26
Last ObjectModification:
2017_07_28-AM-09_19_41
Theory : small!categories
Home
Index