Step
*
of Lemma
mk-functor_wf
No Annotations
∀[A,B:SmallCategory]. ∀[F:cat-ob(A) ⟶ cat-ob(B)]. ∀[M:x:cat-ob(A)
⟶ y:cat-ob(A)
⟶ (cat-arrow(A) x y)
⟶ (cat-arrow(B) F[x] F[y])].
(functor(ob(a) = F[a];
arrow(x,y,f) = M[x;y;f]) ∈ Functor(A;B)) supposing
((∀x:cat-ob(A). (M[x;x;cat-id(A) x] = (cat-id(B) (F x)) ∈ (cat-arrow(B) (F x) (F x)))) and
(∀x,y,z:cat-ob(A). ∀f:cat-arrow(A) x y. ∀g:cat-arrow(A) y z.
(M[x;z;cat-comp(A) x y z f g]
= (cat-comp(B) (F x) (F y) (F z) M[x;y;f] M[y;z;g])
∈ (cat-arrow(B) (F x) (F z)))))
BY
{ (Auto THEN MemTypeCD THEN Auto THEN RepUR ``mk-functor`` 0 THEN Auto) }
Latex:
Latex:
No Annotations
\mforall{}[A,B:SmallCategory]. \mforall{}[F:cat-ob(A) {}\mrightarrow{} cat-ob(B)]. \mforall{}[M:x:cat-ob(A)
{}\mrightarrow{} y:cat-ob(A)
{}\mrightarrow{} (cat-arrow(A) x y)
{}\mrightarrow{} (cat-arrow(B) F[x] F[y])].
(functor(ob(a) = F[a];
arrow(x,y,f) = M[x;y;f]) \mmember{} Functor(A;B)) supposing
((\mforall{}x:cat-ob(A). (M[x;x;cat-id(A) x] = (cat-id(B) (F x)))) and
(\mforall{}x,y,z:cat-ob(A). \mforall{}f:cat-arrow(A) x y. \mforall{}g:cat-arrow(A) y z.
(M[x;z;cat-comp(A) x y z f g] = (cat-comp(B) (F x) (F y) (F z) M[x;y;f] M[y;z;g]))))
By
Latex:
(Auto THEN MemTypeCD THEN Auto THEN RepUR ``mk-functor`` 0 THEN Auto)
Home
Index