Nuprl Lemma : nat-trans-equal2
∀[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[A,B:nat-trans(C;D;F;G)].
A = B ∈ nat-trans(C;D;F;G) supposing A = B ∈ (A:cat-ob(C) ⟶ (cat-arrow(D) (F A) (G A)))
Proof
Definitions occuring in Statement :
nat-trans: nat-trans(C;D;F;G)
,
functor-ob: ob(F)
,
cat-functor: Functor(C1;C2)
,
cat-arrow: cat-arrow(C)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
nat-trans: nat-trans(C;D;F;G)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
cat-arrow_wf,
functor-ob_wf,
nat-trans-equation,
cat-comp_wf,
functor-arrow_wf,
cat-ob_wf,
iff_weakening_equal,
all_wf,
nat-trans_wf,
cat-functor_wf,
small-category_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
universeEquality,
because_Cache,
functionExtensionality,
natural_numberEquality,
sqequalRule,
imageMemberEquality,
baseClosed,
independent_isectElimination,
productElimination,
independent_functionElimination,
dependent_set_memberEquality,
functionEquality,
setElimination,
rename,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[C,D:SmallCategory]. \mforall{}[F,G:Functor(C;D)]. \mforall{}[A,B:nat-trans(C;D;F;G)]. A = B supposing A = B
Date html generated:
2020_05_20-AM-07_51_26
Last ObjectModification:
2017_07_28-AM-09_19_17
Theory : small!categories
Home
Index