Step
*
1
of Lemma
yoneda-lemma
1. C : SmallCategory@i'
2. x : cat-ob(C)@i
3. y : cat-ob(C)@i
4. a1 : cat-arrow(C) x y@i
5. a2 : cat-arrow(C) x y@i
6. (yoneda-embedding(C) x y a1)
= (yoneda-embedding(C) x y a2)
∈ (cat-arrow(FUN(op-cat(C);TypeCat)) (yoneda-embedding(C) x) (yoneda-embedding(C) y))
⊢ a1 = a2 ∈ (cat-arrow(C) x y)
BY
{ (RepUR ``yoneda-embedding`` -1 THEN (EqTypeHD (-1)⋅ THENA Auto)) }
1
1. C : SmallCategory@i'
2. x : cat-ob(C)@i
3. y : cat-ob(C)@i
4. a1 : cat-arrow(C) x y@i
5. a2 : cat-arrow(C) x y@i
6. A |→ λg.(cat-comp(C) A x y g a1)
= A |→ λg.(cat-comp(C) A x y g a2)
∈ (A:cat-ob(op-cat(C)) ⟶ (cat-arrow(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;y) A)))
7. ∀A,B:cat-ob(op-cat(C)). ∀g:cat-arrow(op-cat(C)) A B.
((cat-comp(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;y) A) (rep-pre-sheaf(C;y) B)
(A |→ λg.(cat-comp(C) A x y g a1) A)
(rep-pre-sheaf(C;y) A B g))
= (cat-comp(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;x) B) (rep-pre-sheaf(C;y) B)
(rep-pre-sheaf(C;x) A B g)
(A |→ λg.(cat-comp(C) A x y g a1) B))
∈ (cat-arrow(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;y) B)))
⊢ a1 = a2 ∈ (cat-arrow(C) x y)
Latex:
Latex:
1. C : SmallCategory@i'
2. x : cat-ob(C)@i
3. y : cat-ob(C)@i
4. a1 : cat-arrow(C) x y@i
5. a2 : cat-arrow(C) x y@i
6. (yoneda-embedding(C) x y a1) = (yoneda-embedding(C) x y a2)
\mvdash{} a1 = a2
By
Latex:
(RepUR ``yoneda-embedding`` -1 THEN (EqTypeHD (-1)\mcdot{} THENA Auto))
Home
Index