Nuprl Lemma : callbyvalueall-apply

[g:Base]. ∀[a,F:Top].  (let f ⟵ in let x ⟵ in F[x] let x ⟵ in F[x]) supposing ~ λx.(g x)


Proof




Definitions occuring in Statement :  callbyvalueall: callbyvalueall uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a lambda: λx.A[x] base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a callbyvalueall: callbyvalueall evalall: evalall(t)
Lemmas referenced :  top_wf base_sq base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis callbyvalueReduce sqleReflexivity sqequalAxiom lemma_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache sqequalIntensionalEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:Base]
    \mforall{}[a,F:Top].    (let  f  \mleftarrow{}{}  g  in  let  x  \mleftarrow{}{}  f  a  in  F[x]  \msim{}  let  x  \mleftarrow{}{}  g  a  in  F[x])  supposing  g  \msim{}  \mlambda{}x.(g  x)



Date html generated: 2016_05_15-PM-02_08_47
Last ObjectModification: 2015_12_27-AM-00_36_31

Theory : untyped!computation


Home Index