Nuprl Lemma : callbyvalueall-single-append-nil

[F,a:Top].  (let x ⟵ [a] in let y ⟵ [] in F[y] let y ⟵ [a] in F[y])


Proof




Definitions occuring in Statement :  append: as bs cons: [a b] nil: [] callbyvalueall: callbyvalueall uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top callbyvalueall: callbyvalueall so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a has-valueall: has-valueall(a) implies:  Q append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] uiff: uiff(P;Q) and: P ∧ Q has-value: (a)↓ prop:
Lemmas referenced :  callbyvalueall-single has-valueall_wf_base evalall-sqequal has-valueall-single list_ind_nil_lemma list_ind_cons_lemma cbv_sqequal top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache voidElimination voidEquality baseApply closedConclusion baseClosed independent_isectElimination lambdaFormation dependent_functionElimination productElimination callbyvalueReduce

Latex:
\mforall{}[F,a:Top].    (let  x  \mleftarrow{}{}  [a]  in  let  y  \mleftarrow{}{}  x  @  []  in  F[y]  \msim{}  let  y  \mleftarrow{}{}  [a]  in  F[y])



Date html generated: 2016_05_15-PM-02_08_45
Last ObjectModification: 2016_01_15-PM-10_21_43

Theory : untyped!computation


Home Index