Nuprl Lemma : less-append
∀[a,b,c,d,L:Top].  (if (a) < (b)  then c  else d @ L ~ if (a) < (b)  then c @ L  else (d @ L))
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
less: if (a) < (b)  then c  else d
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
member: t ∈ T
, 
so_apply: x[s1;s2;s3;s4]
, 
top: Top
, 
uimplies: b supposing a
Lemmas referenced : 
top_wf, 
strict4-append, 
lifting-strict-less
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
hypothesisEquality
Latex:
\mforall{}[a,b,c,d,L:Top].    (if  (a)  <  (b)    then  c    else  d  @  L  \msim{}  if  (a)  <  (b)    then  c  @  L    else  (d  @  L))
Date html generated:
2016_05_15-PM-02_07_51
Last ObjectModification:
2016_01_15-PM-10_22_03
Theory : untyped!computation
Home
Index