Nuprl Lemma : less-append

[a,b,c,d,L:Top].  (if (a) < (b)  then c  else if (a) < (b)  then L  else (d L))


Proof




Definitions occuring in Statement :  append: as bs uall: [x:A]. B[x] top: Top less: if (a) < (b)  then c  else d sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) member: t ∈ T so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a
Lemmas referenced :  top_wf strict4-append lifting-strict-less
Rules used in proof :  sqequalSubstitution sqequalRule cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination hypothesis because_Cache isect_memberFormation introduction sqequalAxiom hypothesisEquality

Latex:
\mforall{}[a,b,c,d,L:Top].    (if  (a)  <  (b)    then  c    else  d  @  L  \msim{}  if  (a)  <  (b)    then  c  @  L    else  (d  @  L))



Date html generated: 2016_05_15-PM-02_07_51
Last ObjectModification: 2016_01_15-PM-10_22_03

Theory : untyped!computation


Home Index