Nuprl Lemma : lifting-ispair-concat

[a,b,c:Top].  (concat(if is pair then otherwise c) if is pair then concat(b) otherwise concat(c))


Proof




Definitions occuring in Statement :  concat: concat(ll) uall: [x:A]. B[x] top: Top ispair: if is pair then otherwise b sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T concat: concat(ll) reduce: reduce(f;k;as) list_ind: list_ind has-value: (a)↓ all: x:A. B[x] implies:  Q or: P ∨ Q top: Top uimplies: supposing a
Lemmas referenced :  has-value-implies-dec-ispair concat-strict top_wf is-exception_wf has-value_wf_base has-value-implies-dec-ispair-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle sqequalHypSubstitution sqequalRule callbyvalueExceptionCases hypothesis axiomSqleEquality callbyvalueReduce callbyvalueIspair lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination unionElimination sqleReflexivity isectElimination baseApply closedConclusion baseClosed lambdaFormation isect_memberEquality voidElimination voidEquality because_Cache ispairExceptionCases exceptionSqequal sqequalAxiom independent_isectElimination

Latex:
\mforall{}[a,b,c:Top].
    (concat(if  a  is  a  pair  then  b  otherwise  c)  \msim{}  if  a  is  a  pair  then  concat(b)  otherwise  concat(c))



Date html generated: 2016_05_15-PM-02_07_25
Last ObjectModification: 2016_01_15-PM-10_24_12

Theory : untyped!computation


Home Index