Nuprl Lemma : not-has-value-bottom
¬(⊥)↓
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
has-value: (a)↓
, 
not: ¬A
Definitions unfolded in proof : 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
sqle_wf_base, 
int_subtype_base, 
subtype_base_sq, 
strictness-callbyvalue, 
bottom-sqle, 
cbv_bottom_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
comment, 
lambdaFormation, 
sqequalSqle, 
isectElimination, 
natural_numberEquality, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
promote_hyp, 
baseClosed
Latex:
\mneg{}(\mbot{})\mdownarrow{}
Date html generated:
2016_05_15-PM-02_07_15
Last ObjectModification:
2016_01_15-PM-10_24_00
Theory : untyped!computation
Home
Index