Nuprl Lemma : not-has-value-bottom

¬(⊥)↓


Proof




Definitions occuring in Statement :  bottom: has-value: (a)↓ not: ¬A
Definitions unfolded in proof :  has-value: (a)↓ all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s] not: ¬A implies:  Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} true: True false: False prop:
Lemmas referenced :  sqle_wf_base int_subtype_base subtype_base_sq strictness-callbyvalue bottom-sqle cbv_bottom_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis comment lambdaFormation sqequalSqle isectElimination natural_numberEquality instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination promote_hyp baseClosed

Latex:
\mneg{}(\mbot{})\mdownarrow{}



Date html generated: 2016_05_15-PM-02_07_15
Last ObjectModification: 2016_01_15-PM-10_24_00

Theory : untyped!computation


Home Index