Nuprl Lemma : null-strict
∀[a:Base]. (a)↓ supposing (null(a))↓
Proof
Definitions occuring in Statement : 
null: null(as)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
null: null(as)
, 
has-value: (a)↓
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
callbyvalueIspair, 
hypothesis, 
sqequalRule, 
axiomSqleEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a:Base].  (a)\mdownarrow{}  supposing  (null(a))\mdownarrow{}
Date html generated:
2016_05_15-PM-02_07_18
Last ObjectModification:
2016_01_15-PM-10_24_01
Theory : untyped!computation
Home
Index