WhoCites Definitions DiscrMathExt Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Prime factorization as a multiset on an interval.

Who Cites is prime factorization?
is_prime_factorizationDef  is_prime_factorization(abf) == i:{a..b}. 0<f(i prime(i)
Thm*  a,b:f:({a..b}). is_prime_factorization(abf Prop
primeDef  prime(a) == a = 0 & (a ~ 1) & (b,c:a | bc  a | b  a | c)
Thm*  a:. prime(a Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
assocedDef  a ~ b == a | b & b | a
Thm*  a,b:. (a ~ b Prop
dividesDef  b | a == c:a = bc
Thm*  a,b:. (a | b Prop
leltDef  i  j < k == ij & j<k
leDef  AB == B<A
Thm*  i,j:. (ij Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
intnatural_numbermultiplyless_thansetapplyfunctionuniverseequalmember
propimpliesandorfalseallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions DiscrMathExt Sections NuprlLIB Doc