DiscrMathExt NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in DiscrMathExt

Def  EquivRel on AR[equiv_rel_sep]LogicSupplement
Def  Q(x)[allst_implicit]LogicSupplement
Def  x:AB(x)[product_conventional_notation]LogicSupplement
Def  A/E[quotient_sep]LogicSupplement
Def  AB[isect_two]LogicSupplement
Def  x:A st P(x)B(x)[fun_over_st]LogicSupplement
Def  let xa in b(x)[pure_let]LogicSupplement
Def  let xayb in c(x;y)[pure_let2]LogicSupplement
Def  f is a factorization of k[prime_factorization_of]FTA
Def  is_prime_factorization(abf)[is_prime_factorization]FTA
Def  Prime[prime_nats]SimpleMulFacts
Def  prime(a)[prime]num thy 1
Def  a ~ b[assoced]num thy 1
Def  b | a[divides]num thy 1
Def  IsEqFun(T;eq)[eqfun_p]rel 1
Def  P  Q[iff]core
Def  Prop[prop]core
Def  [nat_plus]int 1
Def  {T}[guard]core
Def  {i...}[int_upper]int 1
Def  {i..j}[int_seg]int 1
Def  i  j < k[lelt]int 1
Def  [nat]int 1
Def  AB[le]core
Def  trivial_factorization(z)[trivial_factorization]FTA
Def  [int_nzero]int 1
Def  a  b[nequal]core
Def  reduce_factorization(fj)[reduce_factorization]FTA
Def  SqStable(P)[sq_stable]core
Def  A & B[cand]core
Def  split_factor2(gxy)[split_factor2]FTA
Def  split_factor1(gx)[split_factor1]FTA
Def  [bool]bool 1
Def  b[assert]bool 1
Def  complete_intseg_mset(abf)[complete_intseg_mset]FTA
Def  !x:AP(x)[exists_unique]LogicSupplement
Def  {a:T}[singleton]core
Def  A =ext B[exteq]LogicSupplement
Def  !A[inhabited_uniquely]LogicSupplement
Def  S  T[subtype]core
Def  A Discrete[is_discrete]LogicSupplement
Def  x f y[infix_ap]core
Def  T[squash]core
Def  True[true]core
Def  P XOR Q[xor]LogicSupplement
Def  Diag f wrt ye(y)[diagonalize]LogicSupplement
Def  prime_mset_complete(f)[prime_mset_complete]FTA
Def  is_prime(x)[prime_decider]SimpleMulFacts
Def  if b t else f fi[ifthenelse]bool 1
Def  {a..b}(f)[eval_factorization]FTA
Def  Iter(f;ui:{a..b}. e(i)[iter_via_intseg]IteratedBinops
Def  P  Q[implies]core
Def  x:AB(x)[all]core
Def  P & Q[and]core
Def  i=j[eq_int]bool 1
Def  i  j < k[lelt_int]FTA
Def  ij[le_int]bool 1
Def  i<j[lt_int]bool 1
Def  pq[band]bool 1
Def  P  Q[or]core
Def  x:AB(x)[exists]core
Def  A[inhabited]LogicSupplement
Def  Dec(P)[decidable]core
Def  A[not]core
Def  EquivRel x,y:TE(x;y)[equiv_rel]rel 1
Def   x:A st P(x). Q(x)[allst]LogicSupplement
Def  x is the u:AP(u)[is_the]LogicSupplement
Def  P  Q[rev_implies]core
Def  b[bnot]bool 1
Def  Trans x,y:TE(x;y)[trans]rel 1
Def  Sym x,y:TE(x;y)[sym]rel 1
Def  Refl(T;x,y.E(x;y))[refl]rel 1

About:
productproductboolbfalsebtrueifthenelseassertunitintnatural_numberadd
subtractmultiplyint_eqlessless_thanuniondecide
setisectquotientlambdaapplyfunctionycombuniverseequal
membersubtypepropimpliesandorfalsetrueallexists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

DiscrMathExt NuprlLIB Doc