WhoCites Definitions LogicSupplement Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Intersection of two types

Who Cites isect two?
isect_twoDef  AB == i:2. if i=0 A else B fi
Thm*  A,B:Type. AB  Type
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
leltDef  i  j < k == ij & j<k
leDef  AB == B<A
Thm*  i,j:. (ij Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop

Syntax:AB has structure: isect_two(AB)

About:
boolbfalsebtrueifthenelseintnatural_numberint_eqless_than
setisectuniversememberpropimpliesandfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions LogicSupplement Sections DiscrMathExt Doc