Definitions LogicSupplement DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in LogicSupplement

Def  EquivRel on AR[equiv_rel_sep]
Def  Q(x)[allst_implicit]
Def  product_conventional_notation(Ax.B(x))[product_conventional_notation]
Def  A/E[quotient_sep]
Def  AB[isect_two]
Def  x:A st P(x)B(x)[fun_over_st]
Def  let xa in b(x)[pure_let]
Def  let xayb in c(x;y)[pure_let2]
Def  Prop[prop]core
Def  IsEqFun(T;eq)[eqfun_p]rel 1
Def  P  Q[iff]core
Def  A & B[cand]core
Def  b[assert]bool 1
Def  [bool]bool 1
Def  {T}[guard]core
Def  A =ext B[exteq]
Def  {a:T}[singleton]core
Def  True[true]core
Def  !A[inhabited_uniquely]
Def  T[squash]core
Def  S  T[subtype]core
Def  P XOR Q[xor]
Def  A Discrete[is_discrete]
Def  x f y[infix_ap]core
Def  !x:AP(x)[exists_unique]
Def  Diag f wrt ye(y)[diagonalize]
Def  EquivRel x,y:TE(x;y)[equiv_rel]rel 1
Def  P  Q[implies]core
Def  x:AB(x)[all]core
Def   x:A st P(x). Q(x)[allst]
Def  i=j[eq_int]bool 1
Def  if b t else f fi[ifthenelse]bool 1
Def  {i..j}[int_seg]int 1
Def  P & Q[and]core
Def  A[inhabited]
Def  Dec(P)[decidable]core
Def  i  j < k[lelt]int 1
Def  AB[le]core
Def  A[not]core
Def  P  Q[or]core
Def  x is the u:AP(u)[is_the]
Def  x:AB(x)[exists]core
Def  P  Q[rev_implies]core
Def  Trans x,y:TE(x;y)[trans]rel 1
Def  Sym x,y:TE(x;y)[sym]rel 1
Def  Refl(T;x,y.E(x;y))[refl]rel 1

About:
productproductboolbfalsebtrueifthenelseassertunitint
natural_numberint_eqless_thanuniondecide
setisectquotientlambdaapplyfunctionuniverse
equalmembersubtypepropimpliesandorfalsetrueall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions LogicSupplement DiscrMathExt Doc