Remark Remark WhoCites Definitions IteratedBinops Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Iteration of a binary operator over a finite sequence of values. Some special cases of this iteration operator include sum, product and exponentiation:

 i:{a..b}. e(i) Iter(x,yx+y;0) i:{a..b}. e(i)
 i:be(i) Iter(x,yx+y;0) i:{0..b}. e(i)
 i:{a..b}. e(i) Iter(x,yxy;1) i:{a..b}. e(i)
 i:be(i) Iter(x,yxy;1) i:{0..b}. e(i)
eb Iter(x,yxy;1) :{0..b}. e
Or i:{a..b}. e(i) Iter(x,yx  y;False) i:{a..b}. e(i)
Or i:be(i) Iter(x,yx  y;False) i:{0..b}. e(i)
And i:{a..b}. e(i) Iter(x,yx & y;True) i:{a..b}. e(i)
And i:be(i) Iter(x,yx & y;True) i:{0..b}. e(i)

Who Cites iter via intseg?
iter_via_intsegDef  Iter(f;ui:{a..b}. e(i)
Def  == if a<b f((Iter(f;ui:{a..b-1}. e(i)),e(b-1)) else u fi
Def  (recursive)
Thm*  f:(AAA), u:Aa,b:e:({a..b}A). (Iter(f;ui:{a..b}. e(i))  A
lt_intDef  i<j == if i<j true ; false fi
Thm*  i,j:. (i<j 

Syntax:Iter(f;ui:{a..b}. e(i) has structure: iter_via_intseg(fui.e(i); ab)

About:
boolbfalsebtrueifthenelseintnatural_numbersubtractless
applyfunctionrecursive_def_noticeuniversememberall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Remark Remark WhoCites Definitions IteratedBinops Sections DiscrMathExt Doc