Definitions IteratedBinops DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in IteratedBinops

Def  Prop[prop]core
Def  P  Q[implies]core
Def  [nat]int 1
Def  is_assoc_sep(Af)[is_assoc_sep]
Def  {i...}[int_upper]int 1
Def  {...i}[int_lower]int 1
Def  {T}[guard]core
Def  {i...j}[int_iseg]int 1
Def  i  j  k[lele]int 1
Def  {i..j}[int_seg]int 1
Def  i  j < k[lelt]int 1
Def  AB[le]core
Def  P  Q[or]core
Def  b | a[divides]num thy 1
Def  P  Q[iff]core
Def  True[true]core
Def  x:AB(x)[exists]core
Def  A[not]core
Def  False[false]core
Def  k![factorial_via_iter]
Def  [nat_plus]int 1
Def  P & Q[and]core
Def  x:AB(x)[all]core
Def  is_assoc(Ax,z.f(x;z))[is_assoc]
Def  is_commutative_sep(Af)[is_commutative_sep]
Def  is_commutative(Ax,z.f(x;z))[is_commutative]
Def  k!m[factorial_tail_via_iter]
Def  Iter(f;ui:{a..b}. e(i)[iter_via_intseg]
Def  i<j[lt_int]bool 1
Def  if b t else f fi[ifthenelse]bool 1
Def  Y[ycomb]core
Def  is_ident(Afu)[is_ident]
Def  P  Q[rev_implies]core

About:
productproductbfalsebtrueifthenelsevoidintnatural_number
addsubtractmultiplylessless_thanuniondecide
setlambdaapplyfunctionycombuniverseequalmemberprop
impliesandorfalsetrueallexists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions IteratedBinops DiscrMathExt Doc