| | Who Cites w-E? |
|
| w-E | Def E == {p:(Id )|  isnull(a(1of(p);2of(p))) } |
|
| w-a | Def a(i;t) == 1of(2of(2of(2of(2of(w)))))(i,t) |
|
| pi2 | Def 2of(t) == t.2 |
| | | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
| pi1 | Def 1of(t) == t.1 |
| | | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
| w-isnull | Def isnull(a) == isl(a) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| le | Def A B == B<A |
| | | Thm* i,j: . (i j) Prop |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |
|
| isl | Def isl(x) == InjCase(x; y. true ; z. false ) |
| | | Thm* A,B:Type, x:A+B. isl(x)  |