Rank | Theorem | Name |
16 | Thm* X: . prime(X)  ( a,b: . X | a b  X | a X | b) | [nat_prime_div_each_factor] |
cites the following: |
15 | Thm* X: .
Thm* prime(X)
Thm* 
Thm* ( X1: . X1<X  prime(X1)  ( a,b: . X1 | a b  X1 | a X1 | b))
Thm* 
Thm* ( W: . 0<W  W<X  ( t: . X | t W  X | t)) | [nat_prime_div_each_factorLEMMA] |
0 | Thm* a: , b: . q: , r: b. a = q b+r | [quot_rem_exists_n] |
11 | Thm* x: . prime(x)  2 x | [natprimes_lb] |
3 | Thm* k: , n: , x,y: . k x+n = k y  x y | [factor_bound] |
2 | Thm* a,b: . a | b  ( c: . b = a c) | [divides_def_on_nat] |
1 | Thm* a: , b: . a | b  a b | [divisor_bound] |