FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
16Thm*  X:. prime(X (a,b:X | ab  X | a  X | b)[nat_prime_div_each_factor]
cites the following:
15Thm*  X:
Thm*  prime(X)
Thm*  
Thm*  (X1:X1<X  prime(X1 (a,b:X1 | ab  X1 | a  X1 | b))
Thm*  
Thm*  (W:. 0<W  W<X  (t:X | tW  X | t))
[nat_prime_div_each_factorLEMMA]
0Thm*  a:b:q:r:ba = qb+r[quot_rem_exists_n]
11Thm*  x:. prime(x 2x[natprimes_lb]
3Thm*  k:n:x,y:kx+n = ky  xy[factor_bound]
2Thm*  a,b:a | b  (c:b = ac)[divides_def_on_nat]
1Thm*  a:b:a | b  ab[divisor_bound]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA Sections DiscrMathExt Doc