THM | extend_intseg_upperpart_down
|
P(n-1) (i:{a..b}. ni P(i)) (i:{a..b}. n-1i P(i)) |
def | prime_mset_complete
|
|
THM | prime_mset_complete_isext
|
|
THM | prime_mset_complete_ismin
|
|
def | eval_factorization
|
The number of which an integer multiset is a factorization
|
THM | eval_factorization_split_mid
|
|
def | prime_factorization_of
|
== (x:Prime. k<x f(x) = 0) & k = {2..k+1}(prime_mset_complete(f)) |
THM | prime_factorization_limit
|
f is a factorization of n g is a factorization of n (x:{2..(n+1)}. prime_mset_complete(f)(x) = prime_mset_complete(g)(x)) f = g |
THM | eval_factorization_split_pluck
|
ac c<b {a..b}(f) = {a..c}(f)cf(c){c+1..b}(f) |
def | trivial_factorization
|
|
THM | trivial_factorization_comp1
|
|
THM | trivial_factorization_comp2
|
|
THM | eval_trivial_factorization
|
|
def | reduce_factorization
|
Removing one member from a factorization multiset
|
THM | reduce_factorization_cancel
|
0<f(j) 0<g(j) reduce_factorization(f; j) = reduce_factorization(g; j) f = g |
THM | reduce_factorization_bound
|
0<f(j) (i:{a..b}. reduce_factorization(f; j)(i)f(i)) |
THM | eval_factorization_nat_plus
|
|
THM | only_positives_prime_fed
|
|
THM | eval_factorization_one
|
|
THM | only_one_factored_by
|
f is a factorization of n f is a factorization of n' n = n' |
THM | eval_factorization_one_b
|
|
THM | eval_factorization_one_c
|
|
THM | eval_factorization_not_one
|
|
THM | eval_factorization_prod
|
The pairwise sum of factorizations of a couple of numbers factorizes their product.
|
THM | eval_factorization_pluck
|
0<f(z) {a..b}(f) = z{a..b}(reduce_factorization(f; z)) |
THM | eval_reduce_factorization_less
|
2j 0<f(j) {a..b}(reduce_factorization(f; j))<{a..b}(f) |
THM | eval_factorization_intseg_null
|
|
THM | eval_factorization_nullnorm
|
|
def | is_prime_factorization
|
Prime factorization as a multiset on an interval.
|
THM | prime_mset_c_is_prime_f
|
|
THM | sq_stable__is_prime_factorization
|
|
THM | reduce_fac_pres_isprimefac
|
0<f(j) is_prime_factorization(a; b; f) is_prime_factorization(a; b; reduce_factorization(f; j)) |
THM | factor_divides_evalfactorization
|
|
THM | nat_prime_div_each_factorLEMMA
|
prime(X) (X1:. X1<X prime(X1) (a,b:. X1 | ab X1 | a X1 | b)) (W:. 0<W W<X (t:. X | tW X | t)) |
THM | nat_prime_div_each_factor
|
|
THM | prime_divs_mul_via_intseg
|
prime(p) (a,b:, e:({a..b}). (a<b p | ( i:{a..b}. e(i)) (i:{a..b}. p | e(i))) |
THM | prime_divs_exp
|
|
THM | prime_factorization_includes_prime_divisors
|
is_prime_factorization(a; b; f) prime(p) p | {a..b}(f) p {a..b} & 0<f(p) |
THM | remove_prime_factor
|
is_prime_factorization(a; b; f) prime(p) p | {a..b}(f) {a..b}(f) = p{a..b}(reduce_factorization(f; p)) |
THM | prime_factorization_unique
|
There is at most one prime factorization of any natural number (given a range of integers to include).
is_prime_factorization(a; b; g) is_prime_factorization(a; b; h) {a..b}(g) = {a..b}(h) g = h |
def | split_factor2
|
(eliminating the power of a composite of two number by adding it to the power of its two factors)
== if u=x g(x)+g(xy) ; u=y g(y)+g(xy) ; u=xy 0 else g(u) fi |
THM | split_factor2_char
|
Redistributing the power of a composite of two numbers in a factorization down to the factors produces another factorization of the same number, zeroing the power of the composite and leaving the powers of larger factors untouched.
xy<k x<y {2..k}(g) = {2..k}(split_factor2(g; x; y)) & split_factor2(g; x; y)(xy) = 0 & (u:{2..k}. xy<u split_factor2(g; x; y)(u) = g(u)) |
def | split_factor1
|
|
THM | split_factor1_char
|
Redistributing the power of a composite square in a factorization down to the square root produces another factorization of the same number, zeroing the power of the composite and leaving the powers of larger factors untouched.
xx<k {2..k}(g) = {2..k}(split_factor1(g; x)) & split_factor1(g; x)(xx) = 0 & (u:{2..k}. xx<u split_factor1(g; x)(u) = g(u)) |
THM | can_reduce_composite_factor
|
A composite factor in a factorization can be reduced to power zero, leaving all larger factors' powers unchanged.
xy<k (h:({2..k}). ({2..k}(g) = {2..k}(h) & h(xy) = 0 & (u:{2..k}. xy<u h(u) = g(u))) |
THM | can_reduce_composite_factor2
|
prime(z) (g':({2..k}). ({2..k}(g) = {2..k}(g') & g'(z) = 0 & (u:{2..k}. z<u g'(u) = g(u))) |
THM | prime_factorization_existsLEMMA
|
2 n < k+1 (i:{2..k}. ni 0<g(i) prime(i)) (h:({2..k}). {2..k}(g) = {2..k}(h) & is_prime_factorization(2; k; h)) |
THM | prime_factorization_exists
|
h:({2..(n+1)}). n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h) |
def | lelt_int
|
|
THM | lelt_int_vs_lelt
|
|
def | complete_intseg_mset
|
|
THM | complete_intseg_mset_ismin
|
|
THM | complete_intseg_mset_isext
|
|
THM | prime_factorization_exists2
|
Every positive integer can be factored into primes.
|
THM | prime_factorization_mset_unique
|
There is at most one prime factorization of any natural number.
f is a factorization of n g is a factorization of n f = g |
THM | fta_mset
|
The Fundamental Theorem of Arithmetic (FTA)
There is a unique prime factorization for every positive integer. |