Origin Definitions Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA
Nuprl Section: FTA - The Fundamental Theorem of Arithmetic - unique prime factorizability

Selected Objects
THMextend_intseg_upperpart_down
a,b:P:({a..b}Prop), n:{(a+1)..(b+1)}.
P(n-1)  (i:{a..b}. ni  P(i))  (i:{a..b}. n-1i  P(i))
defprime_mset_complete
prime_mset_complete(f)(x) == if is_prime(x) f(x) else 0 fi
THMprime_mset_complete_isext
f:(Prime), x:Prime. prime_mset_complete(f)(x) = f(x)
THMprime_mset_complete_ismin
f:(Prime), x:prime(x prime_mset_complete(f)(x) = 0
defeval_factorization
The number of which an integer multiset is a factorization
{a..b}(f) ==  i:{a..b}. if(i)
THMeval_factorization_split_mid
a,c,b:f:({a..b}). ac  cb  {a..b}(f) = {a..c}(f){c..b}(f)
defprime_factorization_of
f is a factorization of k
== (x:Primek<x  f(x) = 0) & k = {2..k+1}(prime_mset_complete(f))
THMprime_factorization_limit
n:f,g:(Prime).
f is a factorization of n

g is a factorization of n

(x:{2..(n+1)}. prime_mset_complete(f)(x) = prime_mset_complete(g)(x))  f = g
THMeval_factorization_split_pluck
a,c,b:f:({a..b}).
ac  c<b  {a..b}(f) = {a..c}(f)cf(c){c+1..b}(f)
deftrivial_factorization
trivial_factorization(z)(i) == if i=z 1 else 0 fi
THMtrivial_factorization_comp1
x,y:x = y  trivial_factorization(x)(y) = 1  
THMtrivial_factorization_comp2
x,y:x  y  trivial_factorization(x)(y) = 0  
THMeval_trivial_factorization
a,b:j:{a..b}. {a..b}(trivial_factorization(j)) = j
defreduce_factorization
Removing one member from a factorization multiset
reduce_factorization(fj)(i) == if i=j f(i)-1 else f(i) fi
THMreduce_factorization_cancel
a,b:f,g:({a..b}), j:{a..b}.
0<f(j)

0<g(j reduce_factorization(fj) = reduce_factorization(gj f = g
THMreduce_factorization_bound
a,b:f:({a..b}), j:{a..b}.
0<f(j (i:{a..b}. reduce_factorization(fj)(i)f(i))
THMeval_factorization_nat_plus
a:b:f:({a..b}). {a..b}(f 
THMonly_positives_prime_fed
f:(Prime), n:f is a factorization of n  0<n
THMeval_factorization_one
a:{2...}, b:f:({a..b}). {a..b}(f) = 1  (i:{a..b}. f(i) = 0)
THMonly_one_factored_by
f:(Prime), n,n':.
f is a factorization of n  f is a factorization of n'  n = n'
THMeval_factorization_one_b
a:{2...}, b:f:({a..b}). {a..b}(f) = 1  (i:{a..b}. 0<f(i))
THMeval_factorization_one_c
a:{2...}, b:f:({a..b}). {a..b}(f) = 1  f = (x.0)
THMeval_factorization_not_one
a:{2...}, b:f:({a..b}). {a..b}(f) = 1  (i:{a..b}. f(i) = 0)
THMeval_factorization_prod
The pairwise sum of factorizations of a couple of numbers factorizes their product.
a,b:f,g:({a..b}). {a..b}(f){a..b}(g) = {a..b}(i.f(i)+g(i))
THMeval_factorization_pluck
a,b:f:({a..b}), z:{a..b}.
0<f(z {a..b}(f) = z{a..b}(reduce_factorization(fz))
THMeval_reduce_factorization_less
a:b:f:({a..b}), j:{a..b}.
2j  0<f(j {a..b}(reduce_factorization(fj))<{a..b}(f)
THMeval_factorization_intseg_null
a,b:f:({a..b}). ba  {a..b}(f) = 1
THMeval_factorization_nullnorm
a,b:f:({a..b}). ba  {a..b}(f) = {a..a}(f)
defis_prime_factorization
Prime factorization as a multiset on an interval.
is_prime_factorization(abf) == i:{a..b}. 0<f(i prime(i)
THMprime_mset_c_is_prime_f
f:(Prime), b:. is_prime_factorization(2; b; prime_mset_complete(f))
THMsq_stable__is_prime_factorization
a,b:f:({a..b}). SqStable(is_prime_factorization(abf))
THMreduce_fac_pres_isprimefac
a,b:f:({a..b}), j:{a..b}.
0<f(j)

is_prime_factorization(abf)

is_prime_factorization(ab; reduce_factorization(fj))
THMfactor_divides_evalfactorization
a,b:f:({a..b}), j:{a..b}. 0<f(j j | {a..b}(f)
THMnat_prime_div_each_factorLEMMA
X:
prime(X)

(X1:X1<X  prime(X1 (a,b:X1 | ab  X1 | a  X1 | b))

(W:. 0<W  W<X  (t:X | tW  X | t))
THMnat_prime_div_each_factor
X:. prime(X (a,b:X | ab  X | a  X | b)
THMprime_divs_mul_via_intseg
p:
prime(p)

(a,b:e:({a..b}).
(a<b  p | ( i:{a..b}. e(i))  (i:{a..b}. p | e(i)))
THMprime_divs_exp
p:. prime(p (b,z:p | zb  b  0 & p | z)
THMprime_factorization_includes_prime_divisors
a:b:f:({a..b}), p:.
is_prime_factorization(abf)

prime(p p | {a..b}(f p  {a..b} & 0<f(p)
THMremove_prime_factor
a:b:f:({a..b}), p:.
is_prime_factorization(abf)

prime(p)

p | {a..b}(f {a..b}(f) = p{a..b}(reduce_factorization(fp))
THMprime_factorization_unique
There is at most one prime factorization of any natural number (given a range of integers to include).
a:{2...}, b:g,h:({a..b}).
is_prime_factorization(abg)

is_prime_factorization(abh {a..b}(g) = {a..b}(h g = h
defsplit_factor2
(eliminating the power of a composite of two number by adding it to the power of its two factors)
split_factor2(gxy)(u)
== if u=x g(x)+g(xy) ; u=y g(y)+g(xy) ; u=xy 0 else g(u) fi
THMsplit_factor2_char
Redistributing the power of a composite of two numbers in a factorization down to the factors produces another factorization of the same number, zeroing the power of the composite and leaving the powers of larger factors untouched.
k:{2...}, g:({2..k}), x,y:{2..k}.
xy<k

x<y

{2..k}(g) = {2..k}(split_factor2(gxy))
& split_factor2(gxy)(xy) = 0
& (u:{2..k}. xy<u  split_factor2(gxy)(u) = g(u))
defsplit_factor1
split_factor1(gx)(u) == if u=x g(x)+g(xx)+g(xx) ; u=xx 0 else g(u) fi
THMsplit_factor1_char
Redistributing the power of a composite square in a factorization down to the square root produces another factorization of the same number, zeroing the power of the composite and leaving the powers of larger factors untouched.
k:{2...}, g:({2..k}), x:{2..k}.
xx<k

{2..k}(g) = {2..k}(split_factor1(gx))
& split_factor1(gx)(xx) = 0
& (u:{2..k}. xx<u  split_factor1(gx)(u) = g(u))
THMcan_reduce_composite_factor
A composite factor in a factorization can be reduced to power zero, leaving all larger factors' powers unchanged.
k:{2...}, g:({2..k}), x,y:{2..k}.
xy<k

(h:({2..k}). 
({2..k}(g) = {2..k}(h) & h(xy) = 0 & (u:{2..k}. xy<u  h(u) = g(u)))
THMcan_reduce_composite_factor2
k:{2...}, g:({2..k}), z:{2..k}.
prime(z)

(g':({2..k}). 
({2..k}(g) = {2..k}(g') & g'(z) = 0 & (u:{2..k}. z<u  g'(u) = g(u)))
THMprime_factorization_existsLEMMA
k:{2...}, n:g:({2..k}).
 n < k+1

(i:{2..k}. ni  0<g(i prime(i))

(h:({2..k}). {2..k}(g) = {2..k}(h) & is_prime_factorization(2; kh))
THMprime_factorization_exists
n:{1...}. 
h:({2..(n+1)}). n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)
deflelt_int
i  j < k == (ij)(j<k)
THMlelt_int_vs_lelt
i,j,k:i  j < k  i  j < k
defcomplete_intseg_mset
complete_intseg_mset(abf)(x) == if a  x < b f(x) else 0 fi
THMcomplete_intseg_mset_ismin
a,b:f:({a..b}), x:a  x < b  complete_intseg_mset(abf)(x) = 0
THMcomplete_intseg_mset_isext
a,b:f:({a..b}), x:{a..b}. complete_intseg_mset(abf)(x) = f(x)
THMprime_factorization_exists2
Every positive integer can be factored into primes.
n:{1...}. f:(Prime). f is a factorization of n
THMprime_factorization_mset_unique
There is at most one prime factorization of any natural number.
n:f,g:(Prime).
f is a factorization of n  g is a factorization of n  f = g
THMfta_mset
The Fundamental Theorem of Arithmetic (FTA)
There is a unique prime factorization for every positive integer.
n:{1...}. !f:(Prime). f is a factorization of n
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Origin Definitions Sections DiscrMathExt Doc