(3steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
can
reduce
composite
factor2
k
:{2...},
g
:({2..
k
}
),
z
:{2..
k
}.
prime(
z
)
(
g'
:({2..
k
}
).
(
{2..
k
}(
g
) =
{2..
k
}(
g'
)
(
&
g'
(
z
) = 0
(
& (
u
:{2..
k
}.
z
<
u
g'
(
u
) =
g
(
u
)))
By:
SimilarTo
Thm*
k
:{2...},
g
:({2..
k
}
),
x
,
y
:{2..
k
}.
Thm*
x
y
<
k
Thm*
Thm*
(
h
:({2..
k
}
).
Thm* (
{2..
k
}(
g
) =
{2..
k
}(
h
)
Thm* (
&
h
(
x
y
) = 0
Thm* (
& (
u
:{2..
k
}.
x
y
<
u
h
(
u
) =
g
(
u
)))
Generated subgoal:
1
1.
k
: {2...}
2.
g
: {2..
k
}
3.
x
,
y
:{2..
k
}.
3.
x
y
<
k
3.
3.
(
h
:({2..
k
}
).
3. (
{2..
k
}(
g
) =
{2..
k
}(
h
)
3. (
&
h
(
x
y
) = 0
3. (
& (
u
:{2..
k
}.
x
y
<
u
h
(
u
) =
g
(
u
)))
4.
z
: {2..
k
}
5.
prime(
z
)
g'
:({2..
k
}
).
{2..
k
}(
g
) =
{2..
k
}(
g'
) &
g'
(
z
) = 0 & (
u
:{2..
k
}.
z
<
u
g'
(
u
) =
g
(
u
))
2
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(3steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc