(12steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
A composite factor in a factorization can be reduced to power zero, leaving all larger factors' powers unchanged.
At:
can
reduce
composite
factor
k
:{2...},
g
:({2..
k
}
),
x
,
y
:{2..
k
}.
x
y
<
k
(
h
:({2..
k
}
).
(
{2..
k
}(
g
) =
{2..
k
}(
h
)
(
&
h
(
x
y
) = 0
(
& (
u
:{2..
k
}.
x
y
<
u
h
(
u
) =
g
(
u
)))
By:
Guarding (
x
:<type>. <prop>) Auto
Generated subgoal:
1
1.
k
: {2...}
2.
g
: {2..
k
}
x
,
y
:{2..
k
}.
x
y
<
k
(
h
:({2..
k
}
).
(
{2..
k
}(
g
) =
{2..
k
}(
h
)
(
&
h
(
x
y
) = 0
(
& (
u
:{2..
k
}.
x
y
<
u
h
(
u
) =
g
(
u
)))
11
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(12steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc