FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
7Thm*  k:{2...}, g:({2..k}), x,y:{2..k}.
Thm*  xy<k
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h)
Thm*  (h(xy) = 0
Thm*  (& (u:{2..k}. xy<u  h(u) = g(u)))
[can_reduce_composite_factor]
cites the following:
2Thm*  i:{2...}, j:{1...}. j<ij[factor_smaller]
6Thm*  k:{2...}, g:({2..k}), x,y:{2..k}.
Thm*  xy<k
Thm*  
Thm*  x<y
Thm*  
Thm*  {2..k}(g) = {2..k}(split_factor2(gxy))
Thm*  & split_factor2(gxy)(xy) = 0
Thm*  & (u:{2..k}. xy<u  split_factor2(gxy)(u) = g(u))
[split_factor2_char]
6Thm*  k:{2...}, g:({2..k}), x:{2..k}.
Thm*  xx<k
Thm*  
Thm*  {2..k}(g) = {2..k}(split_factor1(gx))
Thm*  & split_factor1(gx)(xx) = 0
Thm*  & (u:{2..k}. xx<u  split_factor1(gx)(u) = g(u))
[split_factor1_char]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA Sections DiscrMathExt Doc