Rank | Theorem | Name |
7 | Thm* k:{2...}, g:({2..k }  ), x,y:{2..k }.
Thm* x y<k
Thm* 
Thm* ( h:({2..k }  ).
Thm* ( {2..k }(g) =  {2..k }(h)
Thm* (& h(x y) = 0
Thm* (& ( u:{2..k }. x y<u  h(u) = g(u))) | [can_reduce_composite_factor] |
cites the following: |
2 | Thm* i:{2...}, j:{1...}. j<i j | [factor_smaller] |
6 | Thm* k:{2...}, g:({2..k }  ), x,y:{2..k }.
Thm* x y<k
Thm* 
Thm* x<y
Thm* 
Thm*  {2..k }(g) =  {2..k }(split_factor2(g; x; y))
Thm* & split_factor2(g; x; y)(x y) = 0
Thm* & ( u:{2..k }. x y<u  split_factor2(g; x; y)(u) = g(u)) | [split_factor2_char] |
6 | Thm* k:{2...}, g:({2..k }  ), x:{2..k }.
Thm* x x<k
Thm* 
Thm*  {2..k }(g) =  {2..k }(split_factor1(g; x))
Thm* & split_factor1(g; x)(x x) = 0
Thm* & ( u:{2..k }. x x<u  split_factor1(g; x)(u) = g(u)) | [split_factor1_char] |